一、介绍
Apache Flink 提供了多种部署模式,以适应不同的环境和需求。以下是 Flink 的一些主要部署模式:
1 本地模式(Local Mode):
- Flink 可以在本地机器上以单进程的形式运行,所有任务都将在 JVM 进程中执行。这种模式主要用于开发和测试。
2 Standalone 模式(Standalone Mode):
Standalone 模式允许 Flink 作为独立集群运行,不需要外部的资源管理器。它有一个 Master 进程(JobManager)和多个 Worker 进程(TaskManager)。
默认情况下,Standalone 模式不提供高可用性(HA)。但可以通过配置多个 JobManager 实例并使用 ZooKeeper 来实现高可用性。
3 YARN 模式(YARN Mode):
在 YARN 模式下,Flink 应用程序作为 YARN 集群上的应用程序运行。YARN 负责资源的分配和管理,而 Flink 负责应用程序的执行。
YARN 模式提供了高可用性,并且可以与 Hadoop 生态系统的其他组件(如 HDFS)无缝集成。
YARN 模式支持三种子模式:Per-Job(每个作业一个 YARN 会话)、Session(多个作业共享一个 YARN 会话)和 Application Mode(每个 Flink 作业作为一个 YARN 应用程序运行)。
4 Kubernetes 模式(Kubernetes Mode):
在 Kubernetes 模式下,Flink 应用程序作为 Kubernetes 集群上的容器化应用程序运行。Kubernetes 负责集群的管理、资源的分配和服务的发现。
Flink 提供了与 Kubernetes 集成的 Native Kubernetes 部署模式,以及基于 Helm 的部署选项。
5 Mesos 模式(Mesos Mode):
Mesos 是一个通用的集群管理器,用于在分布式系统中管理资源。在 Mesos 模式下,Flink 应用程序作为 Mesos 集群上的任务运行。
类似于 YARN 模式,Mesos 模式也提供了资源的动态分配和管理。
二、本地模式(Local Mode)
Apache Flink 的本地模式(Local Mode)是一种简单的部署模式,主要用于开发和测试 Flink 应用程序。在本地模式下,Flink 应用程序在单个 JVM 进程中运行,不涉及到集群的部署和管理。
特点
- 简单性:在本地模式下,不需要配置和管理集群,只需要启动 Flink 应用程序即可。
- 快速启动:由于没有集群的启动和管理开销,本地模式可以更快地启动 Flink 应用程序。
- 便于调试:由于所有组件都在单个 JVM 进程中运行,可以更方便地进行调试和故障排除。
用途
- 开发:在开发 Flink 应用程序时,可以使用本地模式来验证代码的正确性和性能。
- 测试:可以使用本地模式来测试 Flink 应用程序的各个方面,包括数据处理逻辑、性能优化等。
- 教学:对于学习 Flink 的新手来说,本地模式是一个很好的起点,因为它不需要复杂的集群配置和管理。
启动本地模式
-
下载 Flink:从 Flink 官网下载适合操作系统的 Flink 发行版。
-
解压:将下载的 Flink 压缩包解压到选择的目录。
-
启动 Flink:在 Flink 的 bin 目录下,运行 start-cluster.sh(Unix/Linux)或 start-cluster.bat(Windows)脚本来启动 Flink 集群。但是请注意,在本地模式下,实际上并不需要启动整个集群,而是直接运行 Flink 应用程序。
-
运行应用程序:使用 Flink 的命令行工具(如 flink run)或编写 Java/Scala 程序来运行 Flink 应用程序。在本地模式下,可以直接指定 local 作为执行模式,例如:flink run -m localhost:8081 -c com.example.MyFlinkJob my-flink-job.jar(这里的 -m localhost:8081 在本地模式下是可选的,因为它默认就是本地执行)。
三、Standalone 模式(Standalone Mode)
Standalone模式(Standalone Mode)是一种基本的集群部署模式。
特点
- 独立集群:Standalone模式下,Flink集群是独立运行的,不依赖于任何外部的资源管理系统,如YARN或Kubernetes。
- 资源预分配:在Standalone模式下,需要预先定义集群的资源规模,包括JobManager和TaskManager的CPU、内存以及每个TaskManager提供的Slot槽位等参数。这些资源在集群启动时就被确定,如果需要扩展,则需要手动调整并重启集群。
- 资源竞争:在Standalone模式下,提交到Flink集群的作业会竞争集群的资源,或者共享集群的资源。当集群的可用Slot数量不足以满足新的作业运行要求时,新的作业会被挂起。
- 风险性:性能差的作业或异常的作业有可能会拖垮整个集群,导致同一个集群里的其他作业也受到影响。
用途
Standalone模式通常用于开发和测试环境,因为它提供了简单且直接的集群管理方式。在开发阶段,可以使用Standalone模式来验证Flink作业的正确性和性能。在测试阶段,可以使用它来模拟生产环境的行为,并测试集群的扩展性和容错性。
部署
- 准备环境:首先,需要准备一组物理机或虚拟机,并确保它们满足Flink的最低系统要求。此外,还需要安装Java 8或更高版本,因为Flink是基于Java开发的。
- 下载并解压:从Flink的官方网站下载适合操作系统的Flink发行版,并解压到目标目录。
- 配置集群:在Flink的conf目录下,可以找到各种配置文件,如flink-conf.yaml和masters、slaves等。需要编辑这些文件来定义集群的参数和配置,如JobManager和TaskManager的地址、端口、内存等。
- 启动集群:在Flink的bin目录下,运行start-cluster.sh(Linux/Unix)或start-cluster.bat(Windows)脚本来启动Flink集群。这将启动一个JobManager进程和多个TaskManager进程,具体数量取决于配置。
- 提交作业:一旦集群启动成功,就可以使用Flink的命令行工具(如flink run)或Flink的客户端库来提交作业到集群了。提交作业时,需要指定作业的JAR包位置、主类名以及任何其他必要的参数。
四、YARN 模式(YARN Mode)
YARN模式(YARN Mode)允许Flink在Hadoop YARN集群上运行,从而充分利用YARN的资源管理和调度能力。
特点
- 资源管理和调度:YARN作为Hadoop的资源调度和集群管理系统,为Flink提供了资源管理和调度的能力。Flink作为YARN的一个应用程序,可以动态地申请和释放资源,以适应不同作业的资源需求。
- 弹性伸缩:YARN模式允许Flink集群根据作业的需求动态地扩展或缩小资源。当作业需要更多资源时,YARN可以自动为