量子计算辅助机器学习改善心血管疾病预测
1. 引言
冠心病(CHD)的发生与多种风险因素密切相关,如超重或肥胖、高血压、高血糖、过量饮酒、吸烟以及缺乏运动等。尽管部分风险因素可改变,且一些代谢症状能用于预测心脏病,但仅依据这些风险因素,医生仍难以迅速且准确地诊断心脏疾病。
冠心病的临床症状受多种功能和病理特征影响,早期诊断极具挑战性,但及时诊断对治疗至关重要。为克服这些挑战,临床决策支持系统的研究不断推进,数据挖掘和机器学习等新技术被广泛应用。
机器学习是提高冠心病预测精度最常用的技术,它无需领域先验知识,能出色地进行泛化,还擅长分析复杂数据,有助于发现冠心病研究的独特模式和信息。近年来,针对大数据集中异常检测的研究增多,构建复杂的冠心病预测模型以实现低成本的早期疾病预测变得尤为关键。基于深度学习的冠心病自动分类和诊断为传统心血管疾病诊断及可穿戴设备数据处理分析提供了有效解决方案。
量子机器学习(QML)分类器在心脏问题识别中发挥重要作用,相关研究成果表明,计算机化医疗决策支持系统有助于医疗专业人员做出准确及时的诊断。为实现早期有效且经济的预测,需利用大量现有信息研究新的QML模型,搭建不同专业知识领域之间的桥梁。
2. 相关工作
- Helstrom Quantum Centroid :Sergioli等人提出了一种用于二元监督学习的新型量子启发分类器,基于密度矩阵和量子理论的形式方面进行研究,并使用14个不同数据集与传统方法对比其有效性。
- 量子启发二元分类器(QIBC) :作者利用决策理论、经典机器学习和