Dense Nets的设计主要基于两点:
网络中的每一层都直接与其前面层相连,实现特征的重复利用;同时把网络的每一层设计得特别「窄」,即只学习非常少的特征图(最极端情况就是每一层只学习一个特征图),达到降低冗余性的目的。
DenseNets具有非常好的抗过拟合性能,尤其适合训练数据相对匮乏的应用。而且相对于resnet它省参数、省计算
接下来我们对整个网络结构进行分析:
首先我们看一下DenseNets网络结构图:
为了便于说明,我以Dense net-121为例。
它分为4个Dense Block块。Dense net的核心主要分为以下几个部分:
- 密集连接:为了提高信息流也就是个人理解的特征在层与层之间的连接。密集连接属于一个DenseBlock块里面的,不同的DenseBlock块不存在密集连接。
-
Composite function(