语义分割系列(3)DenseNets的理解

本文详细介绍了DenseNets网络结构,包括其密集连接、复合功能、池化层、增长率、瓶颈层和通道压缩等关键特性。DenseNets由于特征复用和窄层设计,具有抗过拟合能力,适用于数据有限的场景,并且相比ResNet更节省参数和计算资源。文章以DenseNet-121为例,阐述了其网络布局,并探讨了为何Dense Block内不使用pooling层的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dense Nets的设计主要基于两点:

网络中的每一层都直接与其前面层相连,实现特征的重复利用;同时把网络的每一层设计得特别「窄」,即只学习非常少的特征图(最极端情况就是每一层只学习一个特征图),达到降低冗余性的目的。

DenseNets具有非常好的抗过拟合性能,尤其适合训练数据相对匮乏的应用。而且相对于resnet它省参数、省计算

接下来我们对整个网络结构进行分析:

首先我们看一下DenseNets网络结构图:

 为了便于说明,我以Dense net-121为例。

它分为4个Dense Block块。Dense net的核心主要分为以下几个部分:

 

 

 

  1. 密集连接:为了提高信息流也就是个人理解的特征在层与层之间的连接。密集连接属于一个DenseBlock块里面的,不同的DenseBlock块不存在密集连接。
  2. Composite function(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值