阶乘逆元 三种 快速 方法 费马小定理 递推 线性

本文介绍了三种快速计算阶乘逆元的方法:费马小定理、递推求阶乘逆元和线性求逆元。通过这些方法可以高效地解决在大数模意义下组合数的计算问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

阶乘逆元 三种 快速 方法 费马小定理  递推  线性

1.费马小定理

#include<cstdio>
typedef long long LL;
const LL MOD = 1e9 + 7;
LL fac[1000000+5];        //阶乘
LL inv[1000000+5];        //逆元 
LL quickMod(LL a,LL b)
{
	LL ans = 1;
	while (b)
	{
	    if (b&1)
	        ans = ans * a % MOD;
	     a = a*a % MOD;
	     b >>= 1;
	}
	return ans;
}
void getFac()
{
	fac[0] = inv[0] = 1;
	for (int i = 1 ; i <= 1000000 ; i++)
	{
	     fac[i] = fac[i-1] * i % MOD;
	     inv[i] = quickMod(fac[i],MOD-2);        //表示i的阶乘的逆元 
	}
}
LL getC(LL n,LL m)        //C(n,m) = n!/((n-m)!*m!) % (1e9+7)
{
	return fac[n] * inv[n-m] % MOD * inv[m] % MOD;
}
int main()
{
	getFac();
	int n,m;
	while (~scanf ("%d %d",&n,&m))
	     printf ("%lld\n",getC((LL)n,(LL)m));
	return 0;
}

2.递推求阶乘逆元

我们可以考虑用费马小定理先求出最大那个阶乘的逆元,然后再往回推,直接看代码再解释。

void init() {
	fact[0] = 1;
	for (int i = 1; i < maxn; i++) {
		fact[i] = fact[i - 1] * i %mod;
	}
	inv[maxn - 1] = power(fact[maxn - 1], mod - 2);
	for (int i = maxn - 2; i >= 0; i--) {
		inv[i] = inv[i + 1] * (i + 1) %mod;
	}
}

3.线性求逆元

所以线性递推式为

inv[i]=(mod-mod/i)*inv[mod%i]%mod;

如何利用呢?我们可以利用这个求组合数在mod意义下的值,函数如下:

const ll mod=1e9+7;
const ll maxn=1e5+1;
 
ll f[maxn]={1,1};
ll f0[maxn]={1,1};
ll inv[maxn]={1,1};
 
void init()
{
    for(int i=2;i<=maxn;i++)
    {
        //阶乘数
        f[i]=f[i-1]*i%mod;
        //i在mod意义下的逆元
        f0[i]=(mod-mod/i)*f0[mod%i]%mod;
        //阶乘逆元
        inv[i]=inv[i-1]*f0[i]%mod;
    }
}
 
//求阶乘数C(a,b)在mod意义下的值
ll C(ll a,ll b)
{    
    return f[b]*inv[a]%mod*inv[b-a]%mod;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值