1591 [ZJOI2010] 数字计数(Bzoj1833 LOJ10169 LUOGU2602 提高+/省选-) 暴力30分 需要区分前导0的数位DP 转移方程决定了dp数组

这篇博客介绍了两种解决数字范围内统计特定数字出现次数的方法:暴力求解和数位动态规划(DP)。暴力方法在某些测试点上导致运行超时,而数位DP方法则成功通过所有测试,实现了更优的性能。代码示例展示了两种方法的实现细节,并给出了在线测评平台的链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总目录

在线测评地址(ybt)

在线测评地址(LOJ)

在线测评地址(LUOGU)

1.暴力30分

ybt

未通过

测试点结果内存时间
测试点1答案正确612KB2MS
测试点2答案正确620KB8MS
测试点3答案正确620KB7MS
测试点4运行超时576KB997MS
测试点5运行超时580KB998MS
测试点6运行超时584KB1002MS
测试点7运行超时584KB998MS
测试点8运行超时580KB997MS
测试点9运行超时584KB998MS
测试点10运行超时588KB998MS

LOJ

LUOGU

暴力30分代码如下:

#include <bits/stdc++.h>
#define LL long long
using namespace std;
LL cnt[12];
int main(){
	LL lt,rt,i,x;
	int j;
	scanf("%lld%lld",&lt,&rt);
	for(i=lt;i<=rt;i++){
		x=i;
		while(x){
			cnt[x%10]++;
			x/=10;
		}
	}
	for(j=0;j<=9;j++)printf("%lld ",cnt[j]);
	return 0;
}

2.数位DP

考虑001,100对于统计0的数量时,影响是不同的,该题需要考虑前导0.

该题应有[10]这一维数组,用于区分0-9.

设状态dp[pos][cnt]表示已经考虑到了前 pos位,目前的某个数码 cur的个数为 cnt 。

我们可以转移:f[pos][cnt]=∑f[pos−1][cnt−(now==cur)],其中 now表示考虑的第pos位上的数码。

为什么选pos,cnt,该dp中的两个维度含义,是由转移方程决定。

ybt

通过

测试点结果内存时间
测试点1答案正确620KB1MS
测试点2答案正确604KB2MS
测试点3答案正确608KB2MS
测试点4答案正确608KB2MS
测试点5答案正确612KB2MS
测试点6答案正确612KB2MS
测试点7答案正确608KB2MS
测试点8答案正确604KB2MS
测试点9答案正确616KB2MS
测试点10答案正确616KB2MS

LOJ


LUOGU

 

 数位DP代码如下:

#include <bits/stdc++.h>
#define LL long long
using namespace std;
LL dp[15][15];
int cur;//当前处理的数字 
int bit[15];
LL dfs(int pos,int cnt,bool lead,bool limit){
	LL ans=0;
	int up,i;
	if(pos==-1)return cnt;
	if(!limit&&!lead&&dp[pos][cnt]!=-1)return dp[pos][cnt];
	up=limit?bit[pos]:9;
	for(i=0;i<=up;i++){
		if(cur==0){//cur是0 
			ans+=dfs(pos-1,cnt+(i==0&&!lead),i==0&&lead,i==up&&limit);//cnt+(i==0&&!lead)只统计非前导0的情况 
		}else{//cur是1-9 
			ans+=dfs(pos-1,cnt+(i==cur),i==0&&lead,i==up&&limit);
		}
	}
	if(!limit&&!lead)dp[pos][cnt]=ans;
	return ans;
}
LL solve(LL x){
	int pos=0;
	while(x){
		bit[pos++]=x%10;
		x/=10;
	}
	return dfs(pos-1,0,1,1);
}
int main(){
	LL lt,rt;
	scanf("%lld%lld",&lt,&rt);
	for(cur=0;cur<=9;cur++){
		memset(dp,-1,sizeof(dp));
		printf("%lld ",solve(rt)-solve(lt-1));
	}
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值