
不知所云
之前学的东西,没啥大用了
不会飞的BIRd
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
paddlepaddle的手写体识别
import paddle import matplotlib.pyplot as plt import numpy as np from PIL import Image import paddle.nn.functional as F class MNIST(paddle.nn.Layer): def __init__(self): super(MNIST, self).__init__() self.fc = paddle.nn.Linear(in_fea原创 2021-10-19 20:17:02 · 345 阅读 · 0 评论 -
线性判别分析(LDA)
样本的协方差: 协方差矩阵是一个对角矩阵,对角线上的元素是各维度上随机变量的方差。 我们定义协方差为Σ, 协方差矩阵为: Σ=E[(X−E(X))(X−E(X))T] 对于二维的LDA 要实现 1)两类数据的中心点的投影之间的距离最大 2)两类数据投影距离中心点的距离尽可能小,即协方差尽量小 对于1):用μ0,μ1分别表示两个中心点。 对于2):用Σ0,Σ1表示两类数据投影的协方差。 ...原创 2021-11-02 21:01:35 · 285 阅读 · 0 评论 -
基于神经网络的 “与” 运算器
神经网络学习算法 本次神经网络学习算法旨在完成对加法器的模拟: 真值表: 通过学习训练使得神经网络能够对给出的输入做出正确的输出。 训练函数: 这里,σ作为启动函数 由于此处只有两个自变量,因此训练函数即为 和监督学习算法类似,只是在求和符号外多了一启动函数σ import numpy as np import math x1 = np.array([0, 0, 1, 1]) x2 = np.array([0, 1, 0, 1]) t = np.array([0, 0, 0, 1]) th0 =原创 2021-09-08 20:21:39 · 271 阅读 · 0 评论 -
西瓜书2.0决策树递推过程
原创 2021-10-26 19:22:32 · 148 阅读 · 0 评论 -
监督学习算法
监督学习算法 通过讲解学习了监督学习算法,并将其应用到一个实例中。 算法内容 该算法实现了对数据的拟合于后续的发展可能的预测。 对于该问题: 我们使用函数: 进行学习拟合。 这里theta为需要学习拟合出的系数。 L为误差分析函数,我们以L小于1*e-4为满足条件。 下降梯度: import random import numpy as np import matplotlib.pyplot as plt x1 = np.array([2104,1600,2400,1416,3000]) x2 =原创 2021-09-03 14:54:05 · 239 阅读 · 0 评论 -
改进欧拉算法
改进欧拉算法,使用两个点的斜率对下一个点进行预测: 求出两个点的斜率使用二分之一 的斜率和乘以步长加上之前的y值进行预测 import numpy as np import matplotlib.pyplot as plt t = 0.1 x = 0 y = 1 y1 = np.zeros(100) x1 = np.ones(100) a = np.zeros(100) for i in range(99): y = 1.1 * y - 0.2 * x / y # 对y进行迭代。 x +原创 2021-09-24 09:24:26 · 506 阅读 · 0 评论 -
主成分分析
import numpy as np x = np.array([2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1, 1.5, 1.1]) y = np.array([2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9]) #x,y 平均值 ax = np.average(x) ay = np.average(y) #x,y 调整后的值 xc = x-ax yc = y-ay #调整后的矩阵 D = np.array([xc, yc])原创 2021-10-07 22:07:59 · 96 阅读 · 0 评论 -
神经网络的反向传播算法
对于全连神经网络的隐藏层和输出层的权值的推算:原创 2021-09-17 20:01:31 · 108 阅读 · 0 评论 -
PYTHON
python 多行语句 python通常一行写完一条语句,如果太长的话,一般使用 " \ " 来换行。 例如: sum = data1+\ data2+\ data3 但是在有括号时则不需要使用 " \ " 。 例如: sum = ['data1', 'data2', 'data3'] 数字类型 python有四种数字类型:整数型,浮点数,布尔数和复数。 int(整数形) 普通定义的整数 bool(布尔数)true...转载 2021-05-04 10:40:06 · 243 阅读 · 0 评论 -
Euler公式求解微分方程
对于该问题,我们的思路是: 根据已有的第一个坐标点(x0,y0)通过计算斜率和步长h得出 delta Y 用 delta Y 加上Y得到第二个点的纵坐标 Y1 即:y(n+1) = y(n) + delta(Y) … … 以此类推得到一百个点的坐标 以下是程序 import numpy as np import matplotlib.pyplot as plt x = 0 y = 1 y1 = np.zeros(100) x1 = np.ones(100) for i in range(100): .原创 2021-09-14 21:02:43 · 1088 阅读 · 1 评论 -
隐马尔可夫
#第一天的概率 P = {'s': 0.4, 'r': 0.6, } #前一天的天气条件下,今天的各种天气的概率 CP = {'ss': 0.6, 'rr': 0.7, 'sr': 0.4, 'rs': 0.3} #不同天气下,各种行为的概率 MP = {'rw': 0.1, 'rs': 0.4, 'rc': 0.5, 'sw': 0.6, 'ss': 0.3,'sc': 0.1} #第一天 p11 = 1 * P['s'] * MP['sw'] p12 = 1 * P['r']原创 2021-09-30 20:19:59 · 93 阅读 · 0 评论 -
Numpy应用
import numpy as np data = np.array([1, 2, 3]) print(data.max()) print(data.min()) print(data.sum()) 3 1 6 import numpy as np print(np.ones(3)) print(np.zeros(3)) print(np.random.random(3)) [1. 1. 1.] [0. 0. 0.] [0.27003621 0.87720018 0.90411969] import原创 2021-09-01 20:05:17 · 105 阅读 · 0 评论 -
朴素贝叶斯公式
在夏季,某公园男性穿凉鞋的概率为 1/2 ,女性穿凉鞋的概率为 2/3 ,并且该公园中男女比例通常为 2:1 ,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少? 在这里,我们设事件 Y(y=men)为性别为男, Y(y=women)为,性别为女; X(x=1)为穿凉鞋, X(x=0)为不穿凉鞋; 由题易知X和Y为独立事件,互不干扰。 首先我们先来求 P(X(x=1)) 和 P(X(x=0)) : 由全概率公式: 可知, 穿拖鞋的概率为 人 是 男性且穿拖鞋 的概率加上 人原创 2021-09-15 21:44:46 · 592 阅读 · 0 评论 -
贝叶斯公式在全连接神经网络权重的应用
import numpy as np import math #三行为三组数据 x = np.array([[1, 4, 3, 3, 2, 2, 3], [85, 76, 89, 64, 55, 98, 73], [2, 2, 3, 3, 1, 2, 3]]) #x2 = np.array([100, 76, 89, 64,原创 2021-09-26 15:23:35 · 328 阅读 · 0 评论 -
随机梯度下降法
随机梯度下降法: import numpy as np import random def gen_line_data(sample_num=100): x1 = np.linspace(0, 9, sample_num) x2 = np.linspace(1, 10, sample_num) x3 = np.linspace(2, 11, sample_num) x = np.concatenate(([x1], [x2], [x3]), axis=0).T原创 2021-11-12 09:28:33 · 921 阅读 · 0 评论 -
演员评论家算法
import gym, os from itertools import count import paddle import paddle.nn as nn import paddle.optimizer as optim import paddle.nn.functional as F from paddle.distribution import Categorical device = paddle.get_device() env = gym.make("CartPole-v0") ### 或原创 2021-10-21 17:06:15 · 176 阅读 · 0 评论