- 博客(10)
- 收藏
- 关注
原创 每周学习记录2021-07-04
课程:本周交6门课的期末论文。。。实验:尝试做data balance,失败了,准备改另外的方法做 根据MLCR的模型、loss代码,自己写训练代码,成功跑起来了(感谢城大学长的指点)论文:Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition....
2021-07-04 23:03:15
255
1
原创 每周学习记录2021-06-26
论文研读:Multi-label Co-regularization for semi-supervised facial action unit recognition TAL EmotioNet challenge 2020 rethinking the model chosen problem in multi-task learning实验:ResNet18在2021 challenge 表情Track的数据集上F1=0.29,ACC=87.34% SE-ResNet50在2021 c
2021-06-26 19:44:14
306
原创 每周学习记录2021-06-18
2021年6月18日1、神经网络期末作业《表情识别》:补充DieT使用SE-Reset蒸馏的训练结果;整理SE-Resnet、ViT、DieT、Swin模型在RAFDB上的实验数据。2、研读并汇报上一届情感计算比赛的各项挑战的冠亚军paper;校正表情数据集crop_aligned样本数与label数,使其一致;编写数据集crop_aligned Dataloader脚本代码。下周计划:crop_aligned数据集的SE-ResNet50 baseline...
2021-06-18 19:08:18
493
原创 论文笔记:AU-Expression Knowledge Constrained Representation Learning for Facial Expression Recognition
AU-Expression Knowledge Constrained Representation Learning for Facial Expression Recognition 本论文主要解决in-the-wild的表情识别不准确问题,在一般的网络结构上加入该种表情相关的AU区域特征,在最后分类层前concat整体特征与AU特征,再进行分类。主要创新点:1.利用表情与AU的先验关系,为只有标注表情而没有标注AU的图片生成AU的虚标签,从而能够提取该表情相应的AU特征。2.利用不同AU之间的
2021-04-15 12:28:34
951
原创 论文笔记:Dive into Ambiguity: Latent Distribution Mining and Pairwise Uncertainty Estimation for FER
Dive into Ambiguity: Latent Distribution Mining and Pairwise Uncertainty Estimation for Facial Expression RecognitionCVPR21的表情识别,主要解决标签模糊的问题,提出一种潜在标签挖掘的方法和一种sample间的不确定性评估方法。...
2021-04-13 20:32:04
1943
5
原创 论文笔记:Adversarial graph representation adaptation for cross-domain facial expression recognition
Adversarial graph representation adaptation for cross-domain facial expression recognition基于对抗的无监督图表征域适应的表情识别源码地址:https://github.com/HCPLab-SYSU/CD-FER-Benchmark/tree/2668ac8254e3ddc0f4511d559addb2ab5ab69c2c/AGRA本文对源集与目标集使用CNN分别提取整体特征与脸部landmarks的特征,con
2021-03-31 17:24:34
964
7
原创 论文笔记:Suppressing Mislabeled Data via Grouping and Self-Attention
Suppressing Mislabeled Data via Grouping and Self-AttentionECCV2020
2021-03-27 17:28:11
441
2
转载 Win10上CLion用MinGW编译简单方法
参考(搬运)以下博文:https://www.ikxin.com/447.html在这里做一下记录,主要是这个方法装MinGW很方便快捷,亲测有效。进入以下链接,选最新的版本的文件夹,选择x86_64-posix-sjljhttps://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/各文件解释如下:MinGW-W64-install
2021-03-21 16:20:06
509
1
原创 论文笔记:Semi-supervised Domain Adaptation based on Dual-level Domain Mixing for Semantic Segmentation
Semi-supervised Domain Adaptation based on Dual-level Domain Mixing for Semantic Segmentation最近在看CVPR2021的Domain Adaptation的论文概括本文利用一个带标签的源数据集与一个含少量标签的目标数据集,训练一个基于区域尺度混合数据的“老师”模型和一个基于样本尺度混合数据的“老师”模型,然后共同指导训练一个“学生”模型,由“学生”输出未含标签图片的“虚假”标签,生成的结果再加到训练集中训练。
2021-03-18 11:11:37
1729
原创 VGG16训练RAF-DB
使用VGG16对本地数据集RAF-DB中的basic图片进行训练,label在txt文件里,官方已经在图片命名时分好了train与test;需要自行重写导入数据集的函数。注意batch中label要变成一维,load训练数据时要打乱顺序进行50个epoch,最后得到83.1%的准确率import torch, cv2, os, randomfrom torch.utils import datafrom torchvision import transformsimport torchvisio
2021-03-09 20:46:33
5509
95
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人