paddleOcr 训练自定义数据

本文介绍了如何使用PaddleOcr训练自定义OCR数据,包括环境配置、ppocrlabel工具进行图片标注、数据切分、模型训练、恢复训练及迁移学习等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

paddleOcr 训练自定义数据



前言

环境

python: 3.7.5

paddlepaddle-gpu: 2.2.2

paddleocr: 2.4.0.1

#paddlepaddle
https://www.paddlepaddle.org.cn/
#paddleocr
https://github.com/PaddlePaddle/PaddleOCR
https://gitee.com/paddlepaddle/PaddleOCR

paddleocr 有三种模型 det 检测 cls 方向 rec 识别


一、创建环境

  1. 安装miniconda

    https://blog.csdn.net/mtl1994/article/details/114968140
    
  2. 创建环境

    #linux 需要先 source
    conda create -n paddle_ocr python=3.9.7  --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    
  3. 安装完以后进入环境

    conda activate pad
### PaddleOCR 自定义数据训练指南 对于希望利用 PaddleOCR 训练自定义数据集的情况,可以遵循特定流程来准备和处理数据PaddleOCR 提供了一套完整的工具链用于简化这一过程。 #### 数据标注与准备 为了使模型能够学习到有效的特征表示,在开始之前需先准备好高质量的标注数据。推荐使用官方提供的 `PPOCRLabel` 工具来进行图像中的文字区域标记工作[^2]。此工具位于 GitHub 上的 PaddleOCR 仓库中,提供了图形界面让用户直观地标记图片内的文本框位置及其对应的内容字符串。 完成标注之后,应当按照 PaddleOCR 所接受的标准格式整理这些信息。具体来说,每张图应有一个对应的标签文件(.txt),其中每一行描述了一个单独的文字实例的位置坐标(xmin, ymin, xmax, ymax) 及其识别结果(text)[^3]。 #### 环境配置与依赖安装 确保操作系统环境已正确设置好 Python 解释器及相关库版本。针对 Ubuntu 用户而言,建议参照官方文档说明逐步搭建必要的开发环境并安装所需软件包,这一步骤至关重要以保障后续操作顺利进行[^1]。 #### 开始训练 当一切准备工作就绪后,则可通过调整参数配置文件来启动实际训练任务。通常情况下,默认设定已经过优化适用于大多数场景;然而根据不同需求可能还需要进一步微调超参选项以便获得更佳性能表现。 ```bash # 启动训练命令样例 python tools/train.py -c configs/rec/chinese_lite_train.yml --use_gpu=true ``` 上述指令展示了如何基于预设好的 YAML 配置执行一次典型的 OCR 模型训练会话。请注意替换路径指向本地存储的具体实验方案文件,并根据实际情况决定是否启用 GPU 加速功能。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matianlongg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值