- 博客(439)
- 资源 (2)
- 收藏
- 关注
原创 AI 智能体7种新架构设计模式和代码级落地实现
想象一下,有一个“总指挥官”(中央规划者 LLM),它会把一个复杂的任务拆分成一系列的小任务,然后把这些小任务分派给专门的“工人”(工作 Agent,通常会用到工具调用)去执行。这种做法就像是把不同的工作分给不同的人去做,这样就可以针对每个具体的工作,用专门的提示词、不同的模型或者特定的工具来优化。总之,这些模式可不是死板的规则,而是灵活的积木块。想象一下,有一个“小助手”(Agent)在做任务,做完之后,它会自己检查自己的工作,看看哪里做得不好,然后根据这些反馈,一遍又一遍地改进自己的回答。
2025-06-22 08:00:48
216
原创 Karpathy 最新分享:AI 时代的软件新架构设计 | 文末有福利
这是最新的、也是最根本性的变革。我们通过英语(或其他自然语言)来指导 LLM 完成任务,这种新的编程方式极大地降低了编程的门槛,开启了一种全新的编程范式。它们的计算成本很高,集中在云端,用户通过“分时共享”的方式(比如:API 调用)来使用,这与当年终端连接到中央计算机的方式如出一辙。的类比来说明这一点:我们现阶段应该构建的是钢铁侠的战甲(增强工具),而不是完全自主的钢铁侠机器人军团(自主智能体)。:LLM 的智能是“锯齿状”的,它在某些复杂领域表现出色,但在一些简单问题上却可能犯低级错误,比如:回答“
2025-06-21 08:04:26
271
原创 AI 大模型应用落地到底选用单智能体架构还是多智能体架构?
在2025年的今天,多智能体架构和单智能体架构都有其存在的价值。在多智能体系统中,每个智能体都有自己的“认知边界”和“知识盲区”,它们各自处理信息片段时,缺乏全局视角的统一协调机制。在 Anthropic 的系统中,不同的子智能体可以针对不同领域进行优化:搜索智能体负责信息检索,分析智能体负责数据处理,写作智能体负责内容生成。我的观点是此刻并不需要,因为智能体架构发展阶段不同,参考云原生架构的发展,最初是单体架构,后面演进到微服务架构,目前 AI 原生落地是单智能体架构阶段,后续会发展到多智能体架构阶段。
2025-06-20 08:04:31
564
原创 不要再构建多 AI 智能体架构系统
在这种情况下拥有一个子 AI 智能体的好处是,子 AI 智能体的所有调查工作不需要保留在主 AI 智能体的历史中,这允许在上下文耗尽之前有更长的追踪。不幸的是,由于上下文窗口有限和实际的权衡,这并不总是可能的,你可能需要决定你愿意承担多大的复杂性,以实现你所追求的可靠性水平。在构建多 AI 智能体系统架构时,许多现有的框架并不理想,通过我们自己的实践经验和试错,提出了一些构建 AI 智能体的原则,并解释了为什么一些看似吸引人的想法在实际中可能并不好用。你得到的好处是一个在更长上下文中有效的 AI智能体。
2025-06-19 08:03:21
648
原创 性能提升90%,Anthropic 首次公开多智能体架构构建全流程
用户反馈称,Claude 帮助他们发现了未曾考虑过的商业机会,理清了复杂的医疗方案,解决了棘手的技术难题,还能通过揭示原本难以独立发现的研究关联,节省数天工作时间。多智能体架构通过并行处理,让多个 AI 智能体同时在各自的上下文中思考和搜索,本质上是扩展了解决问题的“算力”和“思考容量”,尤其适合处理那些需要“广度优先”探索的复杂问题。:自动化评估总有盲点。:当信息足够时,系统将所有发现交给一个专门的“引用智能体”(Citation Agent),确保所有结论都有可靠的依据,并最终生成带有引用的完整报告。
2025-06-18 08:02:19
938
原创 Mem0:新一代 AI 智能体的 MCP 持久化记忆架构体系
比如:在进行文本处理时,通过 OpenMemory MCP 的标准化内存操作,不同的编辑工具都能够方便地获取和修改文本的相关信息,如标题、关键词、摘要等,避免了因不同工具之间数据格式和操作方式不一致而导致的问题。有了 OpenMemory MCP 的助力,Cursor 在代码编写过程中产生的关键信息,比如:函数定义、变量的使用情况等,都能够被 Claude 顺利获取并加以利用,这样一来,Claude 生成的注释和文档就会变得更加精准、详细。,就像一个“记忆背包”,能让您把记忆带到各种 AI 应用里。
2025-06-17 08:01:49
742
原创 一文搞定 AI 智能体架构设计的9大核心技术
现在越来越清楚,未来的 Agentic AI 将是多 AI 智能体的。与传统的单体 AI 智能体架构不同,Agentic AI 系统架构由多个 AI 智能体组成,这些 AI 智能体能够相互协作,具备动态任务分解、持久记忆和高级任务编排等能力。目前,MCP 生态已经得到了广泛的支持,包括 Anthropic 的 Claude 系列、OpenAI 的 GPT 系列、Meta 的 Llama 系列、DeepSeek、阿里的通义系列以及 Anysphere 的 Cursor 等主流模型均已接入 MCP 生态。
2025-06-16 08:00:24
642
原创 AI 智能体架构设计的12条原则
通过将智能体的功能限定在特定领域(3-10个步骤,最多20个任务步骤),我们可以保持上下文窗口的可管理性,从而确保大语言模型的高效运行。它循环执行以下操作,直至 LLM 返回终止信号(例如标记为“Terminal”的工具调用或自然语言响应):将 switch 语句的执行结果加入上下文窗口,并让 LLM 决定下一步动作。此外,智能体及其编排的确定性代码应具备长期运行时的自动暂停能力。这两个工具为例,让大语言模型(LLM)“调用工具”,本质上是让它输出一个可解析的 JSON 对象,该对象对应要执行的具体操作。
2025-06-15 08:03:11
500
原创 从单 AI Agents 到多 Agentic AI 架构设计演进剖析
从最初的单一 AI 大模型架构,到如今的 AI Agents 架构,再到最新的 Agentic AI 系统架构,这一演进过程不仅标志着技术的更新换代,更是对 AI 系统架构设计哲学的重新思考。与传统的单体 AI Agents 架构不同,Agentic AI 系统架构由多个智能体组成,这些智能体能够相互协作,具备动态任务分解、持久记忆和高级任务编排等能力。在Agentic AI 系统中,每个智能体都有其独特的角色和能力,它们可以相互协作、共享信息,并根据任务需求动态调整策略。两种系统都面临着各自独特的挑战。
2025-06-14 07:56:55
699
原创 从 Naive RAG 到 Agentic RAG 架构设计演进关键技术
这并不意味着不需要设计好的提示词--你还需要确保模型返回的答案符合预期,比如:如果检索到的上下文中没有相关信息,就不要编造答案。在本文中,我们会探讨 RAG 的演变过程,从最初的简单版本(Naive RAG)到现在更智能的版本(Agentic RAG)。对于 RAG,如果需要,我们可以把向量嵌入预先计算好,存到兼容的数据库里,供之后检索用。这里需要考虑上下文嵌入。:即使可以在提示词中加入上下文信息,也需要精心设计提示词,调整系统,以生成符合预期的输出,并防止被“越狱”(即防止模型生成不适当的内容)。
2025-06-13 08:00:42
771
原创 MCP 和 A2A 之后又一 AI Agent 协议刷屏了:AG-UI 协议架构设计剖析
AG-UI 就像 REST 是客户端到服务器请求的标准一样,AG-UI 将实时 AI Agent 更新流式传输回 UI 的标准。AG-UI 让你能够轻松地在网页、APP、应用程序或嵌入式设备中集成 AI 助手、AI 客服和智能问答 UI,避免了为每个应用程序重复开发基础功能的麻烦,也省去了处理交互逻辑的烦恼。I Agent 在落地过程中,MCP 解决了 AI Agent 到 Tools 之间的通信标准,A2A 解决了 AI Agent 到 AI Agent 之间的通信标准。
2025-06-12 08:01:57
598
原创 从文本到多模态,Embedding 模型选型指南
以 OpenA I为例,其最新推出的 text-embedding-3-small 模型能够生成1536维向量,在保持高语义表达能力的同时,实现了更低的延迟和更小的模型体积,非常适合对性能要求较高的大规模语义检索场景。要牢记,最适合的模型并非总是基准测试分数最高的,而是最符合业务实际需求和技术约束的模型。在 Embedding 模型快速发展的当下,建议定期回顾现有选型,持续关注新技术和新模型,及时替换那些可能带来显著收益的解决方案。在金融、医疗等对数据安全要求极高的行业,自托管部署可能是唯一可行的选择。
2025-06-11 08:23:11
882
原创 MCP 和 Function Calling 架构设计对比剖析
Function Calling 是一种强大的工具,它为大语言模型提供了与外部工具和服务交互的能力,从而解决了大模型知识更新停滞的问题。:大模型将获取的数据整合成一个完整的回答,比如:“根据最新数据,北京今天的天气晴朗,当前温度23°C,湿度45%,微风。它是大模型的一个基础能力,就是识别什么时候要工具,可能需要啥类型的工具的能力。大模型通过 FunctionCalling 表达,我要调用什么工具,Agent 遵循指令执行工具的调用,而 MCP 则是提供了一种统一的工具调用规范。
2025-06-10 08:00:25
786
原创 Spring AI Alibaba 1.0 正式 GA,打造企业级智能体生态平台!!
Spring AI Alibaba 1.0 GA 正式发布,它是专属 Spring 开发者的 AI 框架,兼具提示词模版、函数调用、格式化输出等低层次抽象与 RAG、Agent、对话记忆等高层次抽象,通义系列模型驱动,深度集成网关、配置中心、可观测等云原生基础设施生态,让 Java 智能体开发迎来一款生产可用的企业级框架与解决方案,助力企业智能体开发进入一个新阶段。目前,模型的能力尚未达到我们的期望。通过这种方式,开发者可以高效地构建复杂的工作流,同时利用预置节点的强大功能,实现高效的任务拆解和流程管理。
2025-06-09 09:04:40
877
原创 深入解析 Agent 与 Workflow 架构设计的差异
这种方法不是简单的一次性调用LLM,而是设计了一个多阶段、多步骤的交互过程,通过持续的反馈优化来提升任务处理的质量和效果。随着技术的进步,我们看到越来越多的 AI Agent 智能体集成了多种类型的特点,以更好地应对复杂的应用需求。通过这些创新的任务处理方法,我们能够更有效地利用 AI 技术,应对更复杂的挑战,创造更大的价值。AI Workflow 通过标准化和自动化大幅提升处理效率,包括并行处理能力的提升、自动化操作的减少、智能调度的优化和流程优化的降低等待时间。
2025-06-05 08:02:47
437
原创 MCP 和 A2A 架构设计对比剖析
其实,一直以来,人们都在寻找一种方法,能让大量的 AI Agent 之间互相连接,还能和传统的系统连接。Anthropic 推出的 MCP(模型上下文协议)取得了成功,这显然激发了 AI 行业里的其他参与者,大家都想来定义一些开放协议,好用在 AI Agent 系统(Agentic Systems)的集成里。随着 MCP 的迅速流行,公司把 MCP Server 作为他们产品的一部分变得很常见,这样开发者就可以轻松地把这些平台的内容整合到他们自己的基于 LLM 的应用中。谁知道呢,让我们拭目以待。
2025-06-04 08:02:36
598
原创 MCP 架构设计新演进:从 Service Mesh 演进到 Agentic Mesh
如上图所示,应用程序A和应用程序B交互,请求调用关系如下:应用程序A调用本地的 Sidecar A,Sidecar A 在通过网络交互调用远端的 Sidecar B,再由 Sidecar B 把请求传递给应用程序B。在这样的架构模式下,业务应用程序再也不需要关注服务治理的功能,服务治理的功能升级也不要依赖于服务自身,从而能够让业务迭代更快速和高效。:如果部署在不同的机器上,就会又引入服务通信交互的问题,那么就会变成无解的难题:为了解决通信交互的问题,又引入新的通信交互的问题。
2025-06-03 10:48:27
442
原创 从单 Agent 到多 Agent 的案例落地实践
我们之前基于经营分析 Agent 构建的数据集和评价体系,天然地过渡到了 RL(强化学习)领域的环境和奖励函数的构建。Multi-Agent 系统的设计应从单个 Agent 开始,只有在单个 Agent 无法满足需求时,才逐步过渡到多 Agent 架构。与 LLM 最大的区别在于,Agentic System 可以与现实世界交互,从感知环境开始,做出决策并执行,影响环境,然后基于反馈调整,不断持续迭代循环。:在经营分析场景中,将评价体系(如 AARRR 模型)转化为强化学习的奖励函数,实现模型的持续优化。
2025-06-02 08:16:50
957
原创 11张图全面总结 MCP、A2A、Function Calling 架构设计间关系
MCP 的扩展性则通过统一的接口标准,将复杂的 M(个模型)×N(个外部工具对接)问题转化为 M+N 的问题。目前,MCP 生态已经得到了广泛的支持,包括 Anthropic 的 Claude 系列、OpenAI 的 GPT 系列、Meta 的 Llama 系列、DeepSeek、阿里的通义系列以及 Anysphere 的 Cursor 等主流模型均已接入 MCP 生态。从大模型本身,到为大模型添加工具调用功能,再到大模型与工具的交互标准,最后到 AI Agent 之间的通信协议,这一系列的发展就像是。
2025-05-31 08:16:31
581
原创 基于 MCP 实现推荐业务场景案例架构设计
很多企业内部都有推荐业务的场景,特别是对于招聘推荐业务,招聘场景涉及到企业用人端的招聘服务,也涉及到个人用户的简历数据,这些数据往往散落在不同的平台中,为了更高效的实现人才的匹配,招聘平台就需要利用 AI Agent 智能体根据招聘岗位需求快速找到最合适的候选人,这就是招聘的推荐业务场景。Anthropic 推出的 MCP(模型上下文协议)取得了成功,这显然激发了 AI 行业里的其他参与者,大家都想来定义一些开放协议,好用在 AI Agent 系统(Agentic Systems)的集成里。
2025-05-29 08:03:11
515
原创 基于 MCP 实现智能体案例架构设计
这个协议的野心不小,它想做的事情就像编程语言里的 LSP(Language Server Protocol)一样,为 AI 和工具之间的互动设定一个标准,让 AI Agent 能动态地发现、选择和组织工具,甚至还支持人在操作过程中插手。在整个运行阶段,MCP服务器保持稳定和受控的环境,使可靠和安全的任务执行成为可能。如图 2 所示,在典型工作流程中,用户向 MCP 客户端发送提示词,客户端分析意图,通过 MCP 服务器选择适当的工具,并调用外部 API 来检索和处理所需的信息,然后通知用户结果。
2025-05-28 08:02:29
801
原创 Spring AI 1.0 GA 正式发布!!支持 MCP 很炸裂!!
MCP 是一种面向客户端-服务器的协议,一旦构建了 MCP 服务器,就可以轻松地将其应用于您的应用程序,无论 MCP 服务器是用什么编程语言编写的,MCP 客户端是用什么编程语言编写的。然而,这并不是万能的解决方案。从 AI 工具的角度来看,它就像一个工具类库,您可以轻松将其添加到您的应用程序中。Spring AI 是一款非常优秀的 AI 应用开发框架,它专为 Java 开发者而设计,帮助 Java 开发者快速构建具备智能化的应用,很高兴看到 Spring AI 在今天达成正式 GA 版本!
2025-05-27 08:02:39
954
原创 一文搞懂大模型、RAG、函数调用、Agent、知识库、向量数据库、知识图谱、AGI 的区别和联系
智能体构建在大语言模型的推理能力基础上,对大语言模型的 Planning 规划的方案使用工具执行(Action) ,并对执行的过程进行观测(Observation),保证任务的落地执行。在如今的大模型时代背景下,RAG 巧妙地引入外部数据源,比如:本地知识库或企业信息库,为 AI 大模型赋予了更强大的检索和生成实力,从而显著提升了信息查询和生成的品质。总之,知识图谱本质上是一种叫作语义网络的知识库,即一个具有有向图结构的知识库,其中图的结点代表实体或者概念,而图的边代表实体/概念之间的各种语义关系。
2025-05-22 08:04:22
908
原创 MCP 之后又一 AI Agent 协议刷屏了:AG-UI 协议架构设计剖析
AG-UI 就像 REST 是客户端到服务器请求的标准一样,AG-UI 将实时 AI Agent 更新流式传输回 UI 的标准。AG-UI 让你能够轻松地在网页、APP、应用程序或嵌入式设备中集成 AI 助手、AI 客服和智能问答 UI,避免了为每个应用程序重复开发基础功能的麻烦,也省去了处理交互逻辑的烦恼。I Agent 在落地过程中,MCP 解决了 AI Agent 到 Tools 之间的通信标准,A2A 解决了 AI Agent 到 AI Agent 之间的通信标准。
2025-05-15 08:01:08
1011
原创 万字长文剖析 AI 时代应用开发的9个新范式
现在,随着像 Replit、Same.dev、Loveable、Convex 的 Chef 和 Bolt 这样的文本到应用平台的出现,以及像 Cursor 这样的 AI IDE,这种动态正在发生变化。试想一下,在不远的将来,一个规模庞大、功能丰富的能力注册表横空出世,AI Agent 可以像如今的开发者使用 npm 或 PyPI 一样,轻松地在其中发现并调用各种新能力。想象一下这个场景:一个 AI Agent 正在监控你的系统,它不需要漂亮的图表,它需要结构化的数据和可执行的上下文。
2025-05-13 08:02:02
672
原创 一文剖析基于 MCP 的 AI 应用技术架构全景视图:从基础实施层、云原生层、模型层、应用技术层、应用架构层、到应用层
MCP 已经成为业界的标准,基于 MCP 的 AI 应用技术已经在具体的业务场景落地实践,本文通过梳理基于 MCP 的 AI 应用技术架构的全景视图,让你全面了解 AI 应用技术的各个层次,从基础实施层、云原生层、模型层、应用技术层、应用架构层、到应用层,如下图所示,揭示基于 MCP 的 AI 应用技术如何在不同的层面上协同工作,推动产业应用的落地。通过融合文本、图像、音频等多种模态的信息,该技术提升了模型的精确度和稳健性,并在安全监控、医疗诊断等多个领域得到了广泛应用。
2025-05-11 09:19:42
508
原创 企业级 AI Agent 系统落地架构设计剖析
我们认为这是至关重要的。对于用户的 Prompt 提示词,AI Agent 会基于大模型先做规划(Planning),拆解成若干子任务,然后对每个子任务分别执行(Action),同时对每一步的执行结果进行观测(Observation),如果观测结果合格,就直接返回给用户最终答案,如果观测结果不合格或者执行出错,会重新进行规划(Replanning)。或者更准确地说--构建 AI Agent 的原型很容易,但可靠的和企业级的 AI Agent,能够支持关键业务应用的 AI Agent,这是很难的。
2025-05-10 08:01:43
966
原创 AI 应用性能优化全景图
比如:NVIDIA 的 CUDA、AMD 的 ROCm、平头哥半导体的 HGAI、华为的 Ascend C、寒武纪的 BangC、摩尔线程的 MUSA、燧原科技的 Tops Riser、沐曦集成的 MXMACA 以及壁仞科技的 SUPA 等平台,不仅提供针对硬件优化的编程语言,还配套提供了一系列开发者工具,比如:库、工具包和文档等。国内主流的大语言模型方案有:阿里云的 Qwen、DeepSeek、百度的文心一言、字节跳动的豆包、腾讯云的混元、科大讯飞的星火以及月之暗面科的 Kimi 等。
2025-05-09 07:30:45
1171
原创 基于 Spring AI Alibaba 的 RAG 架构调优实践
查询翻译是 RAG 系统中的一项便捷功能,它允许将用户的查询从一个语言版本转换为另一个语言版本。Spring AI Alibaba 提供了一种高效的查询扩展功能,能够自动产生多个相关的查询版本,进而提升搜索的精确度和覆盖率。这一步骤的关键价值在于,优质的知识切割如同图书馆的分类系统,决定了检索效率。”的查询时,系统将生成多个从不同视角出发的查询。查询改写是 RAG 系统中的一项关键优化手段,它通过将用户的原始查询转化为更加规范和明确的查询形式,从而提升搜索的精确度,并协助系统更准确地把握用户的真正需求。
2025-05-08 08:01:33
701
原创 AI 应用推理架构中5大关键问题的解决方案
在传统的应用场景中,由于每个用户请求对服务器的资源消耗相差不大,且请求执行速度快、资源消耗少,因此在请求数量足够多的情况下,各个服务器的负载会趋于均衡。这种方法有效减少了用户端的重试频率。同时,Redis 作为消息队列,不仅解耦了接入服务和限流服务,还完成了限流结果的实时推送,提高了系统的灵活性和响应速度。在复杂的模型推理场景中,由于推理过程耗时较长且推理时间不确定,如果接入服务同步等待结果,可能会导致过多的 HTTP 连接,以及因连接异常断开而导致的请求失败等问题,这些问题会降低整体性能并增加失败率。
2025-05-07 08:05:09
642
原创 告别传统 RAG,私有知识库 + DeepSeek,打造本地版 Deep Research
因此 AI Agent 智能体足够重要,但也足够复杂,我这两年实践结论是,想开发出一个能够可靠稳定的 AI Agent 智能体应用实在太难了,大模型技术本身的复杂度,大模型推理的不确定性,响应速度性能问题等等,这些困难直接导致很多人对其望而却步,或是遇到问题无从下手。这些数据可以是企业内部数据、在线下载的数据,或者是其他系统中定期导入的数据。,我们正在经历一场重大技术变革,还不像当年的互联网的兴起,这是一场颠覆性的变革,掉队就等于淘汰,因为未来所有应用都将被 AI Agent 智能体重写一遍;
2025-05-05 08:02:52
611
原创 万字长文剖析基于 MCP 构建 AI 大模型新架构体系的落地实践
虽然 MCP 提供了统一的协议,但将现有业务重构为 MCP Server 的成本非常高,且目前支持的开发语言有限,像 Go 和 PHP 都没有对应的 MCP SDK。LLM 接收到信息后,根据用户问题和 MCP Server 信息,筛选出最合适的 MCP Server 和 MCP Tool 来解决问题,并将结果反馈给 AI Agent(MCP Client)。在 AI 应用中,尤其是流程式构建的模式中,大多数 AI Agent 的职责单一,计算逻辑简单,因此可以用较小资源规格的函数承载。
2025-05-04 08:05:34
959
原创 RAG 之父:RAG Agents 企业级落地的10个经验教训!
从需求分析、架构设计、架构技术选型、硬件资料规划、核心代码落地、服务治理等全流程实践,深度学习企业级 AI 大模型应用落地项目全流程重点难点问题解决。而是关注业务目标、用户体验和解决企业实际问题。Agent、RAG、Fine-tuning 微调、MCP、Prompt。Agent、RAG、Fine-tuning 微调、MCP、Prompt。Agent、RAG、Fine-tuning 微调、MCP、Prompt。Agent、RAG、Fine-tuning 微调、MCP、Prompt。
2025-05-03 08:02:34
683
原创 MCP (模型上下文协议)架构设计深度剖析
这个协议的野心不小,它想做的事情就像编程语言里的 LSP(Language Server Protocol)一样,为 AI 和工具之间的互动设定一个标准,让 AI Agent 能动态地发现、选择和组织工具,甚至还支持人在操作过程中插手。在整个运行阶段,MCP服务器保持稳定和受控的环境,使可靠和安全的任务执行成为可能。如图 2 所示,在典型工作流程中,用户向 MCP 客户端发送提示词,客户端分析意图,通过 MCP 服务器选择适当的工具,并调用外部 API 来检索和处理所需的信息,然后通知用户结果。
2025-05-02 08:03:16
857
原创 Spring AI 1.0.0 发布!支持 MCP 很炸裂!!
无论你使用的是 OpenAI 的 GPT、深度求索的 DeepSeek、谷歌的 Gemini、Anthropic 的 Claude,还是 Hugging Face 上的开源模型,Spring AI 都旨在提供一套统一且可移植的 API,让你能够轻松调用。它的目标是将 Spring 生态系统中的一些设计原则,比如:可移植性和模块化设计,应用到 AI 领域。Spring AI 的 MCP 功能是在 MCP Java 开发包的基础上,增加了和 Spring Boot 集成的功能,提供了客户端和服务端的启动器。
2025-04-24 08:04:12
2344
原创 MCP 实践:基于 MCP 架构实现知识库系统
从 MCP 服务器的日志中可以看到自动调用了知识库和 FAQ 的检索工具,并能根据之前导入的内容进行回答。将切分后的文本段和提取的 FAQ 导入知识库,并进行 Embedding 处理,以便将文本转换为向量形式,便于检索。通过这些优化,我们的知识库构建和检索流程能够更有效地处理和响应用户查询,提供更准确、更全面的答案。对输入的文本进行切分,确保切分后的文本段在保持完整性和语义连贯性的同时,便于后续处理和检索。从文本中提取常见问题及其答案(FAQ),作为知识库的一部分,以增强检索的准确性和效率。
2025-04-23 08:01:24
1102
原创 谷歌 A2A (Agent2Agent)架构设计深度剖析
这一协议为各类 AI Agent 之间的高效沟通与协作搭建了桥梁,无论是独立 Agent 与独立 Agent、独立 Agent与企业 Agent,还是企业 Agent与企业 Agent,都可以通过该协议实现通信交互和事务协作。值得注意的是,一个 Agent 既可以作为客户端 Agent 发起任务,也可以作为服务端 Agent 执行任务,具有双重角色的灵活性。Server Agent:服务端 Agent 是任务的执行者,它接收来自客户端 Agent 的请求,并执行相应的操作。:这是一个很有趣的功能。
2025-04-22 08:01:45
841
原创 MCP 和 A2A 架构设计剖析
其实,一直以来,人们都在寻找一种方法,能让大量的 AI Agent 之间互相连接,还能和传统的系统连接。Anthropic 推出的 MCP(模型上下文协议)取得了成功,这显然激发了 AI 行业里的其他参与者,大家都想来定义一些开放协议,好用在 AI Agent 系统(Agentic Systems)的集成里。随着 MCP 的迅速流行,公司把 MCP Server 作为他们产品的一部分变得很常见,这样开发者就可以轻松地把这些平台的内容整合到他们自己的基于 LLM 的应用中。谁知道呢,让我们拭目以待。
2025-04-21 10:05:30
1067
原创 深度好文剖析 MCP 驱动下 AI 应用架构设计新范式的落地实践
虽然 MCP 提供了统一的协议,但将现有业务重构为 MCP Server 的成本非常高,且目前支持的开发语言有限,像 Go 和 PHP 都没有对应的 MCP SDK。LLM 接收到信息后,根据用户问题和 MCP Server 信息,筛选出最合适的 MCP Server 和 MCP Tool 来解决问题,并将结果反馈给 AI Agent(MCP Client)。在 AI 应用中,尤其是流程式构建的模式中,大多数 AI Agent 的职责单一,计算逻辑简单,因此可以用较小资源规格的函数承载。
2025-04-20 08:02:54
1088
原创 从架构设计侧剖析: MCP vs A2A 是朋友还是对手?
其实,一直以来,人们都在寻找一种方法,能让大量的 AI Agent 之间互相连接,还能和传统的系统连接。Anthropic 推出的 MCP(模型上下文协议)取得了成功,这显然激发了 AI 行业里的其他参与者,大家都想来定义一些开放协议,好用在 AI Agent 系统(Agentic Systems)的集成里。随着 MCP 的迅速流行,公司把 MCP Server 作为他们产品的一部分变得很常见,这样开发者就可以轻松地把这些平台的内容整合到他们自己的基于 LLM 的应用中。谁知道呢,让我们拭目以待。
2025-04-16 08:03:10
777
搜索入门搜索入门资料,绝对值得看!!!!!
2008-09-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人