- 博客(10)
- 收藏
- 关注
原创 大厂在用的LTV知识地图:1张图拆解用户生命周期价值全链路(附干货资料)
LTV用户生命周期价值是用户运营中一个非常重要的指标,之所以重要是因为衡量获客ROI的一个北极星指标ROI=LTV/获客的成本(CAC)用户能持续贡献价值,则可以逐步回收成本,直到LTV>CAC,今天给大家分享一张详细的LTV地图(点开大图看)一、理论公式层:LTV=LT*ARPU(上期文章分享了LT如何计算,大家可以到历史文章找到:《如何用AI预测用户生命周期(LT)》这篇文章)ARPU=客单价*消费频次客单价=GMV/消费用户数消费频次=总消费次数/消费用户数二、工具方法层。
2025-06-22 11:37:20
447
原创 用户生命周期价值(LTV)如何测算?一个超详细的测算模型快收好!
摘要:文章介绍了用户生命周期价值(LTV)的计算公式及其核心指标ARPU的分解方法,重点分享了如何用SPSS工具分析用户分层数据。作者强调SPSS比SQL和Python更易上手,提供配套视频课程教学。同时分享了LT测算表和用户运营干货资料包,包含补贴评估模型等实用内容。全文旨在帮助用户运营从业者快速掌握核心分析技能,提升职场竞争力。
2025-06-16 23:42:06
550
1
原创 用户运营4大策略体系搭建:增长框架+用户建模+场景化分层+数据运营
增长工具就是能够帮助企业高效获得用户的手段,可以是实物,也可以是分析模型,也可以是券。
2024-12-01 22:11:32
2125
原创 用户运营必学的4个数据运营模型
为了理解怎么做流失预警,我们来看一个案例,O2O平台洗衣频道发现最近客户流失严重,打算组织一场用户活动来遏制这种趋势,可是这个客户挽留活动是频道众多市场活动中的一个,预算也有限,需要用户部门通过数据挖掘的方法找到可能流失的高价值用户,并刻画这部分用户的特征,从而利用流失用户的特征找到其他可能要流失的用户进行分群运营。首先定义流失用户,基于已知流失用户刻画画像特征,包含三方面特征数据,分别是基础画像,行为特征,活跃特征,基于c5.0决策树算法生成流失规则,从而利用规则预测未流失用户的倾向分。
2024-11-30 23:11:11
689
原创 用户运营如何通过搭建uplift模型精准发券
在增益图中,百分位46处的增益值1.5914表明,在模型预测为最有可能响应的前46%的用户中,响应率是随机选择用户响应率的1.5914倍,这是一个相对较高的提升,表明模型在这个百分位上的预测是有效的。利润图表示在不同百分位的用户中,通过使用优惠券所获得的总利润。
2024-06-15 21:38:11
1217
原创 用户运营实战:生鲜超市用户运营案例分享
用户运营离不开洞察和模型的搭建,洞察如用户行为路径、用户时序习惯分析和预测,模型更不用说了,搭建时序预测模型和用户流失预警模型,除了算法工程师建模之外,运营可以使用SPSS分析软件搭建用户模型,只需了解SPSS使用方法即可,这样可以基于结论迅速假设-执行-验证,而效率却远远高于算法工程师所谓的大数据挖掘,即使大数据挖掘的再精细也是一个漫长的过程,所谓效率决定一切!
2024-02-10 22:16:28
1885
1
原创 用户促复购实战:如何搭建一个复购洞察模型
不同的获客渠道带来的人群偏好购买什么,喜欢什么促销,平均购买件数如何,通过聚类挖掘出各人群这些特征后就可以针对渠道来做定制化的组合打法,比如刚才分析的低频女性复购人群喜欢购买蔬菜,客件数较低,主要是好友推荐而来,针对这些特征可以设计和好友的拼团、砍价及蔬菜水果的捆绑营销活动。如图所示,通过选择节点将未复购的用户群圈选出来,然后使用k-means聚类,将未复购用户特征聚类出来,同样第三个问题有复购行为用户,哪些用户复购频次偏低,这种人群特征是什么样的也是如此实现,来看下结果。
2024-02-06 22:39:33
1548
原创 增长秘籍:用户全生命周期价值(LTV)指标如何计算
以互联网的产品来说,用户生命周期(Life Time, LT)即是第一次下载并打开你的APP至再也不来的周期。用户价值(ARPU,Average Revenue Per User/Unit)=一段时间内的平均用户每次付费的金额*一段时间内的平均用户购买频率。使用以上的30天留存数据先生成一个散点图,然后插入趋势线,选择幂函数,下方的显示公式和显示R方都选中,这样就得到留存率的拟合图和公式。如果我们要计算用户180天的生命周期价值,留存率预测为6%,则LT=1/(1-6%)=1.06天。
2024-02-06 22:11:55
5198
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人