Bezier曲线之升阶和降阶公式

本文介绍了Bernstein基函数的定义、递推性质,展示了它们在构建n次Bezier曲线中的应用,包括控制顶点和Bezier多边形的概念。深入探讨了Bezier曲线的升阶与降阶概念,适合理解参数化曲面在计算机图形学中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.Bernstein基函数

Bernstein基函数可以作为多项式空间的一组基底,n次Bernstein基函数Bin(t)B^n_i(t)Bin(t)定义为:
Bin(t)=(in)ti(1−i)n−i,(in)=n!i!(n−i)!,i=0,1,...,n. B^n_i(t) = (^n_i)t^i(1-i)^{n-i}, (^n_i) = \frac {n!} {i!(n-i)!} ,i=0,1,...,n. Bin(t)=(in)ti(1i)ni,(in)=i!(ni)!n!,i=0,1,...,n.
下图为n=5时的Bernstein基函数的图像n=5
     
     

二、Bernstein基函数的递推性质

递推性质.

      n次Bernstein基函数可分别由两个n-1次或两个n+1次的Bernstein基函数递推得到,即
{Bin(t)=(1−t)Bin−1(t)+tBi−1n−1(t),Bin(t)=i+1n+1Bi+1n+1(t)+(1−in+1)Bi−1n−1(t),i=0,1,...,n.\begin{cases}B^n_i(t) = (1-t)B^{n-1}_i(t)+tB^{n-1}_{i-1}(t) , \\ B^n_i(t) =\frac{i+1}{n+1}B^{n+1}_{i+1}(t)+(1-\frac{i}{n+1})B^{n-1}_{i-1}(t) , \\ i=0,1,...,n . \end{cases} Bin(t)=(1t)Bin1(t)+tBi1n1(t),Bin(t)=n+1i+1Bi+1n+1(t)+(1n+1i)Bi1n1(t),i=0,1,...,n.
其中B−1n−1(t)=Bnn−1(t)≡0.B^{n-1}_{-1}(t) = B^{n-1}_{n}(t)\equiv0.B1n1(t)=Bnn1(t)0.
     
     
     

三、Bezier曲线

      给定n+1个空间向量Pi∈R3(i=0,1,...,n)P_i\in R^3 (i= 0,1,...,n)PiR3(i=0,1,...,n), 称n次参数曲线段
P(t)=∑i=0nPiBin(t),0≤t≤1.(1) P(t) = \sum^n_{i=0}P_iB^n_i(t) ,0\leq t \leq1 .(1) P(t)=i=0nPiBin(t),0t1.1

为一条n次Bezier曲线.PiP_iPi称为控制顶点,依次用直线段连接相邻的两个PiP_iPi所得的n边折线多边形称为Bezier多边形或者控制多边形.
      下图为3次Bezier曲线,其中折线为相应的控制多边形.
n=3
      

四、Bezier曲线升阶、降阶公式

在这里插入图片描述
也可以理解为Bezier曲线降阶公式不存在。
      
      
      
以下是我上计算几何时朱春钢老师的课件

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值