一.Bernstein基函数
Bernstein基函数可以作为多项式空间的一组基底,n次Bernstein基函数Bin(t)B^n_i(t)Bin(t)定义为:
Bin(t)=(in)ti(1−i)n−i,(in)=n!i!(n−i)!,i=0,1,...,n.
B^n_i(t) = (^n_i)t^i(1-i)^{n-i}, (^n_i) = \frac {n!} {i!(n-i)!} ,i=0,1,...,n.
Bin(t)=(in)ti(1−i)n−i,(in)=i!(n−i)!n!,i=0,1,...,n.
下图为n=5时的Bernstein基函数的图像
二、Bernstein基函数的递推性质
递推性质.
n次Bernstein基函数可分别由两个n-1次或两个n+1次的Bernstein基函数递推得到,即
{Bin(t)=(1−t)Bin−1(t)+tBi−1n−1(t),Bin(t)=i+1n+1Bi+1n+1(t)+(1−in+1)Bi−1n−1(t),i=0,1,...,n.\begin{cases}B^n_i(t) = (1-t)B^{n-1}_i(t)+tB^{n-1}_{i-1}(t) , \\ B^n_i(t) =\frac{i+1}{n+1}B^{n+1}_{i+1}(t)+(1-\frac{i}{n+1})B^{n-1}_{i-1}(t) , \\ i=0,1,...,n . \end{cases}
⎩⎪⎨⎪⎧Bin(t)=(1−t)Bin−1(t)+tBi−1n−1(t),Bin(t)=n+1i+1Bi+1n+1(t)+(1−n+1i)Bi−1n−1(t),i=0,1,...,n.
其中B−1n−1(t)=Bnn−1(t)≡0.B^{n-1}_{-1}(t) = B^{n-1}_{n}(t)\equiv0.B−1n−1(t)=Bnn−1(t)≡0.
三、Bezier曲线
给定n+1个空间向量Pi∈R3(i=0,1,...,n)P_i\in R^3 (i= 0,1,...,n)Pi∈R3(i=0,1,...,n), 称n次参数曲线段
P(t)=∑i=0nPiBin(t),0≤t≤1.(1)
P(t) = \sum^n_{i=0}P_iB^n_i(t) ,0\leq t \leq1 .(1)
P(t)=i=0∑nPiBin(t),0≤t≤1.(1)
为一条n次Bezier曲线.PiP_iPi称为控制顶点,依次用直线段连接相邻的两个PiP_iPi所得的n边折线多边形称为Bezier多边形或者控制多边形.
下图为3次Bezier曲线,其中折线为相应的控制多边形.
四、Bezier曲线升阶、降阶公式
也可以理解为Bezier曲线降阶公式不存在。
以下是我上计算几何时朱春钢老师的课件