概述
Raspberry Pi (树莓派)是一种小型、经济实惠的单板计算机。从业余爱好者的家庭自动化到工业用途,它在各种项目和应用中广受欢迎。树莓派板能够运行各种操作系统,并提供 GPIO(通用输入/输出)引脚,可轻松与传感器、执行器和其他硬件组件集成。它们有不同的型号,规格也各不相同,但都具有相同的基本设计理念,即低成本、紧凑型和多功能。
受到硬件计算能力的制约,在Raspberry Pi上建议使用 YOLO11n 和 YOLO11s 进行推理,其他模型规模太大,在 Raspberry Pis 上无法运行,也无法提供良好的性能。
在 Raspberry Pi (运行Raspberry Pi OS) 上安装Ultralytics 软件包构建计算机视觉项目有两种方法。
使用 Docker 启动
在 Raspberry Pi 上开始使用Ultralytics YOLO11 的最快方法是使用为 Raspberry Pi 预制的 docker 镜像。
执行下面的命令,调出 Docker 容器并在 Raspberry Pi 上运行。这是基于arm64v8/debian docker 镜像,其中包含 Python3 环境下的 Debian 12 (Bookworm)。
t=ultralytics/ultralytics:latest-arm64
sudo docker pull $t && sudo docker run -it --ipc=host $t
不使用 Docker 启动
安装Ultralytics 软件包
在这里,我们将在 Raspberry Pi 上安装Ultralytics 软件包和可选依赖项,以便导出 PyTorch模型为其他不同格式。
-
更新软件包列表,安装 pip 并升级到最新版本
sudo apt update sudo apt install python3-pip -y pip install -U pip
-
安装
ultralytics
pip 软件包与可选依赖项pip install