使用 NumPy 来模拟随机游走(Random Walk)

本文介绍如何使用Python模拟一维随机游走过程,并利用NumPy进行高效的大规模模拟。通过实例展示了如何统计模拟结果,包括计算最大值、最小值、首次穿越时间等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

考虑一种最简单的情形,即从位置 0 开始,每次前进一步(step=1)或者后退一步(step=-1),前进与后退的概率相同。

不使用 NumPy,直接使用 Python 内置的 random 函数:

import random
import matplotlib.pyplot as plt

position = 0
walk = [position]
steps = 1000
for i in range(steps):
    step = 1 if random.randint(0, 1) else -1
    position += step
    walk.append(position)
    
plt.plot(walk[:100])
plt.show()

其实,walk 的值其实就是 step 的累加值。我们考虑使用 NumPy 来实现:

nsteps = 1000
draws = np.random.randint(0, 2, size=nsteps)
steps = np.where(draws > 0, 1, -1)
walk = steps.cumsum()

我们可以注意到两个 randint 函数的区别:

  • Python 的内置 random 模块每次只会采样一个值,而 numpy.random 可以同时采样一系列值。这意味着在产生大量样本时,numpy.random 的速度会比 random 模块快上几个量级
  • random.randint 取值范围:[low, high]numpy.random.randint 取值范围:[low, high)

我们可以很轻易的得到 walk 的最大值或者最小值:

walk.min()
"""
-7
"""

如果我们想要找到 the first crossing time,即第一次穿过某个位置的 step,例如,我们想找第一次离原点 0 距离为 10 的 step

(np.abs(walk) >= 10).argmax()

np.abs(walk) >= 10 返回一个布尔数组,我们用 argmax 方法找到第一个值为 True 的位置(True 即为最大值,且argmax 会返回第一个最大值出现的位置)。


上面我们考虑了模拟一次随机游走的流程,如果我们想模拟很多次,例如,5000次,那么使用 NumPy 也可以很容易实现:

nwalks = 5000
nsteps = 1000

draws = np.random.randint(0, 2, size=(nwalks, nsteps))

steps = np.where(draws > 0, 1, -1)
walks = steps.cumsum(1) # 计算每行,也就是每次模拟的累加值

walks
"""
array([[  1,   2,   3, ...,  52,  51,  50],
       [  1,   2,   1, ...,  20,  19,  20],
       [  1,   2,   3, ..., -34, -35, -36],
       ...,
       [  1,   2,   3, ...,  44,  45,  46],
       [ -1,   0,  -1, ...,   0,  -1,   0],
       [  1,   2,   1, ...,  48,  49,  50]])
"""

我们计算这 5000 次模拟中有多少次模拟穿过了 30 或 -30 位置:

hits30 = (np.abs(walks) >= 30).any(1)
hits30.sum()
"""
3361
"""

进一步,我们可以得出这 3361 次模拟中第一次穿过 30 或 -30 位置的平均 step

crossing_time = (np.abs(walks[hits30]) >= 30).argmax(1)
crossing_time.mean()
"""
500.99226420708123
"""

References

Python for Data Analysis, 2nd^{\rm nd}nd edition. Wes McKinney.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如松茂矣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值