医学图像dicom格式转nii

本文深入探讨医学图像数据的组成,包括元数据、光度解释及像素数据,并对比DICOM与NIFTI两种主流存储格式的特点。文章指出,DICOM适用于医疗图像的管理与传输,而NIFTI因其3D图像格式,在机器学习应用中更受青睐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、医学图像数据组成

元数据(Metadata):通常以“数据头”的格式被储存在文件的开头,包括患者ID信息、名字以及图像矩阵维度、空间分辨率、像素深度和光度表示等信息

光度解释(Photometric Interpretation):解释了像素数据如何以正确的图像格式(单色或彩色图片)显示。为了说明像素数值中是否存在色彩信息,引入“每像素采样数”的概念。单色图像只有一个“每像素采样”,而且图像中没有色彩信息。图像是依靠由黑到白的灰阶来显示的,灰阶的数目很明显取决于用来储存样本的比特数。在这里,灰阶数与像素深度是一致的。医疗放射图像,比如CT图像和磁共振(MR)图像,是一个灰阶的“光度表示”。而核医学图像,比如正电子发射断层图像(PET)和单光子发射断层图像(SPECT),通常都是以彩色映射或调色板来显示的

像素数据(Pixel Data):储存像素数值的位置。根据数据类型的不同,像素数据使用数值显示所需的最小字节数,以整点或浮点数的格式储存。  

像素深度(Pixel Depth):是用来编码每个像素信息的比特数。比如说,一个8比特的光栅可以有256个从0到255数值不等的图像深度

所以,图像的大小=头部文件(包含元数据)+行✖列✖深度✖帧数(时间)所保存的数据 

2、医学图像的存储格式

DICOM(.dcm)是Digital−Imaging−and−Communications−in−Medical即医学数字图像与通信英文首字母的缩写,是当今很流行的一种医学图像保存格式,DICOM是一个标准,规范了医学成像的管理、储存、打印和信息传输,这些都是扫描仪或医院“医疗影像储传系统”(PACS)中的文件格式。 DICOM包括了一个文件格式和一个网络通讯协议,其中的网络通讯协议是医疗实体间使用TCP/IP进行沟通的一个规范和准则。 一个DICOM文件由一个数据头和图像数据组成的。数据头的大小取决于数据信息的多少。数据头中的内容包括病人编号、病人姓名等等。同时,它还决定了图像帧数以及分辨率。这是图片查看器用于显示图像的。即使是一个单一的图像获取,都会有很多DICOM文件。

Pydicom是用于读取DICOM文件的Python库

NIFTI(.nii)是Neuroimaging−Informatics−Technology−Initiative即神经影像信息技术,NIFTI格式被认为ANALYZE7.5格式的替代品。NIFTI最初是用于神经成像的,但它也适用于一些其他的领域。NIFTI中一个主要的特点在于它包含了两个仿射坐标定义,这两个仿射坐标定义能够将每个体素指标(i,j,k)和空间位置(x,y,z)联系起来

Nibabel是用于读取nifti文件的一个Python库

DICOM和NIFTI之间最主要的区别在于NIFTI中的原始图像数据是以3D图像的格式储存的,而DICOM是以3D图像片段的格式储存的。这就是为什么在一些机器学习应用程序中NIFTI比DICOM更受欢迎,因为它是3D图像模型。处理一个单个的NIFTI文件,与处理上百个DICOM文件相比要轻松得多。NIFTI的每一张3D图像中只需储存两个文件,而在DICOM中则要储存更多文件。 

PAR/REC是Philips磁共振扫描格式

ANALYZE是Mayo医学成像

NRRD是近原始栅格数据

MNIC

3、格式转换

深度学习中一般将dicom格式转换为nii格式进行处理

采用MRIcron的dcm2nii将dicom转换为nii格式

 

 

 

 


 

### 将 DICOM 文件转换为 NIfTI 格式的解决方案 在 Linux 环境下,可以利用多种工具和库来实现将 DICOM 文件转换为 NIfTI 格式的功能。以下是几种常见的方法: #### 方法一:使用 dcm2niix 工具 dcm2niix 是一种广泛使用的开源工具,专门用于将 DICOM 和 PAR/REC 文件转换为 NIfTI 格式。它支持多平台操作,并且能够保留元数据信息。 安装方式如下: ```bash sudo apt-get update sudo apt-get install dcm2niix ``` 运行命令示例: ```bash dcm2niix -o /output/directory /path/to/dicom/files ``` 其中 `-o` 参数指定输出目录,而 `/path/to/dicom/files` 表示包含原始 DICOM 文件的路径[^1]。 #### 方法二:通过 Python 的 NiBabel 库处理 如果需要编程控制,Python 提供了一个强大的医学图像处理库 `NiBabel`,它可以读取和写入 NIfTI 格式文件。然而,对于从 DICOM 转换到 NIfTI,则通常会结合另一个库 PyDicom 来完成此任务。 代码示例如下: ```python import pydicom import nibabel as nib from nibabel.nifti1 import Nifti1Image # 加载DICOM文件 ds = pydicom.dcmread("/path/to/dicom/file") # 获取像素数组以及仿射变换矩阵(假设已知) data = ds.pixel_array.astype(float) img_affine = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] # 示例仿射矩阵 # 创建NIfTI对象并保存 nii_image = Nifti1Image(data, img_affine) nib.save(nii_image, "/path/to/output/image.nii.gz") ``` 注意这里假定了一个简单的单位矩阵作为仿射变换参数;实际应用中可能需要更复杂的计算以匹配具体的空间坐标系定义[^2]。 #### 方法三:借助 SPM 及其扩展 CAT12 SPM (Statistical Parametric Mapping) 是一款基于 MATLAB 的软件包,主要用于神经影像数据分析。CAT12 是它的插件之一,提供了额外功能,包括批量转换 DICOM 到 NIfTI 的能力。 下载链接见官方主页[^4]。按照说明文档设置好环境之后即可调用相应脚本执行批量化作业。 --- #### 常见问题排查 - 如果遇到类似 “vim: command not found”的情况,请先验证是否已经正确安装所需编辑器或其他依赖项。可以通过以下指令快速解决缺失问题: ```bash sudo apt-get install vim ``` - 对于某些特定错误比如 CUDA runtime errors 或者命名冲突等问题,可参照之前提到的相关经验调整源码或者重新规划项目结构[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值