浮点数类型的存储

本文深入探讨了浮点数在计算机中的存储方式,遵循IEEE 754标准,包括浮点数的结构、32位与64位浮点数的指数与有效数字处理,并通过实例解析了特定数值的二进制表示。此外,文章还解释了如何从二进制还原为浮点数以及浮点数转换过程中的细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

常见的浮点数:
3.14159 1E10 浮点数家族包括: float、double、long double 类型。 浮点数表示的范围:float.h中定义

一、浮点数存储的例子

int main()
{
 int n = 9;
 float *pFloat = (float *)&n;
 printf("n的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 *pFloat = 9.0;
 printf("num的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 return 0; }

在这里插入图片描述

详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

(-1)^S * M * 2^E (-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位

举例来说: 十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。 那么,按照上面V的格式,可以得出s=0,
M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。
IEEE 754规定: 对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
在这里插入图片描述

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
在这里插入图片描述

IEEE 754对有效数字M和指数E,还有一些特别规定。 前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。

  IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。
**首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0–255;**如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E 是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

然后,指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前 加上第一位的1。 比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位, 则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位
00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为
0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

二、解释前面的题目

下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000 ? 首先,将 0x00000009 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 ,最后23位的有效数字M=000 0000 0000 0000 0000
1001。

9 -> 0000 0000 0000 0000 0000 0000 0000 1001

由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成: V=(-1)^0 ×0.00000000000000000001001×2(-126)=1.001×2(-146) 显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是 0.000000。

再看例题的第二部分。 请问浮点数9.0,如何用二进制表示?还原成十进制又是多少? 首先,浮点数9.0等于二进制的1001.0,即1.001×2^3。

9.0 -> 1001.0 ->(-1)^01.0012^3 -> s=0, M=1.001,E=3+127=130

那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010。 所以,写成二进制形式,应该是s+E+M,即

0 10000010 001 0000 0000 0000 0000 0000

这个32位的二进制数,还原成十进制,正是 1091567616 。

### 浮点数类型变量的定义 浮点数(Floating-point)是一种用于表示带有小数部分数值的数据类型。在编程语言中,浮点数通常以单精度(float)和双精度(double)的形式存在。浮点数变量可以存储诸如 `3.14`、`-0.001` 或 `123.456` 等形式的数值。定义一个浮点数变量需要为其指定一个名称,并根据语言特性决定是否显式声明其数据类型。 例如,在 C 语言中,可以使用 `float` 或 `double` 来声明一个浮点数变量: ```c float weight = 65.5; // 单精度浮点数 double height = 175.8; // 双精度浮点数 ``` 而在 Python 中,变量无需显式声明类型,解释器会自动识别并分配适当的数据类型: ```python weight = 65.5 # Python 自动识别为 float 类型 height = 175.8 # 同样为 float 类型 ``` 在一些工业编程环境如 STEP 7 中,浮点数变量可能使用 `REAL` 或 `FLOAT` 关键字进行声明: ```pascal VAR myVariable : REAL; END_VAR ``` ### 浮点数类型变量的使用方法 使用浮点数变量时,可以通过赋值语句将其绑定到特定的数值上[^2]。一旦变量被定义和赋值后,就可以在程序的不同位置进行引用、修改或参与运算。 在 C 语言中打印浮点数时,需使用相应的格式控制符,例如 `%f` 用于 `float`,而 `%lf` 用于 `double`: ```c printf("体重:%f\n", weight); // 打印单精度浮点数 printf("身高:%lf\n", height); // 打印双精度浮点数 ``` Python 中则可以直接使用 `print()` 函数输出浮点数变量: ```python print("体重:", weight) print("身高:", height) ``` 此外,浮点数变量还可以参与各种数学运算,如加法、减法、乘法和除法等: ```c float result = weight + height; // 在 C 中进行浮点数加法 ``` ```python result = weight + height # 在 Python 中进行浮点数加法 ``` ### 注意事项 尽管浮点数能够表示实数,但在计算机内部是以近似方式存储的,这可能导致精度损失。因此,在涉及金融计算或高精度要求的应用中,应谨慎使用浮点数,或者考虑使用更高精度的数据类型如十进制(decimal)库。 另外,在某些编程环境中,浮点数运算可能会比整数运算慢,因为它们通常需要更多的处理时间和资源。如果性能是关键因素,则可能需要优化代码结构或选择更合适的数据类型。 最后,在跨平台或不同编译器之间移植代码时,应注意目标系统对浮点数的支持情况,包括大小端序(endianness)、舍入规则以及溢出行为等细节[^1]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值