自然语言模型:检测假新闻文章
1. 传统机器学习方法检测假新闻
在检测假新闻的任务中,我们可以使用传统的机器学习方法,下面是详细的步骤:
1.1 数据预处理
首先,我们需要对新闻内容进行预处理,将其转换为适合模型处理的格式。以下是具体的代码:
from nltk.stem import PorterStemmer
import pandas as pd
porter_stemmer = PorterStemmer()
def clean_and_prepare_content(content):
# 这里可以添加具体的文本清理和准备逻辑
return processed_text
news_df = pd.read_csv("WELFake_Dataset.csv")
news_df['processed_content'] = news_df.content.apply(lambda content: clean_and_prepare_content(content))
# 分离数据和标签
X = news_df.processed_content.values
y = news_df.label.values
print(X.shape, y.shape)
运行上述代码后,输出结果为 (72134,) (72134,)
。
1.2 文本转数值
由于机器学习算法只能处理数字,我们需要将文本数据转换为数值格式。这里我们使用 TF-IDF 特征:
<