35、自然语言模型:检测假新闻文章

自然语言模型:检测假新闻文章

1. 传统机器学习方法检测假新闻

在检测假新闻的任务中,我们可以使用传统的机器学习方法,下面是详细的步骤:

1.1 数据预处理

首先,我们需要对新闻内容进行预处理,将其转换为适合模型处理的格式。以下是具体的代码:

from nltk.stem import PorterStemmer
import pandas as pd

porter_stemmer = PorterStemmer()

def clean_and_prepare_content(content):
    # 这里可以添加具体的文本清理和准备逻辑
    return processed_text

news_df = pd.read_csv("WELFake_Dataset.csv")
news_df['processed_content'] = news_df.content.apply(lambda content: clean_and_prepare_content(content))

# 分离数据和标签
X = news_df.processed_content.values
y = news_df.label.values
print(X.shape, y.shape)

运行上述代码后,输出结果为 (72134,) (72134,)

1.2 文本转数值

由于机器学习算法只能处理数字,我们需要将文本数据转换为数值格式。这里我们使用 TF-IDF 特征:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值