自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 f-string 高效的字符串格式化

f-string,称为格式化字符串常量(formatted string literals),是Python3.6新引入的一种字符串格式化方法,该方法源于PEP 498 – Literal String Interpolation,主要目的是使格式化字符串的操作更加简便。

2025-05-21 18:22:24 959

原创 yolov8 框架自带模型体验功能

YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。在图像检测识别领域yolov8和yolov5是使用较多的两款框架,兼顾精度和速度。

2025-04-18 17:21:35 1020

原创 Fastapi 日志处理

Uvicorn 的日志配置文件可以使用 JSON、YAML 或 INI 三种格式。

2025-04-18 17:18:04 860 1

原创 多模态模型 Grounding DINO 初识

Grounding DINO 是一种先进的零样本目标检测模型,由 IDEA Research 开发。它通过将基于 Transformer 的检测器 DINO 与Grounded Pre-Training相结合,实现了通过人类输入(如类别名称或指代表达)对任意物体进行检测。

2025-04-17 17:38:52 1103

原创 目标检测高频评价指标的计算过程

在yolo目标检测的评价指标中有如下字段:指标的计算过程如图:下面详细介绍各个步骤的涉及的概念,计算方法。

2025-01-22 17:41:58 1107

原创 python streamlit 介绍

Streamlit是一个面向机器学习和数据科学团队的开源应用程序框架。通过它可以用python代码编写前端页面,方便快捷的构建交互式应用程序。streamlit 优缺点streamlit优点:不必需要web方面知识也可以开发出可用的前端页面内置很多机器学习交互的组件,更有利于算法工程师使用开发速度快,修改方便

2025-01-22 16:01:43 1563

原创 docker-compose部署下Fastapi中使用sqlalchemy和Alembic

本篇介绍使用Fastapi + sqlalchemy + alembic 来完成后端服务的数据库管理,并且通过docker-compose来部署后端服务和数据库Mysql。包括:1. 数据库创建,数据库用户创建2. 数据库服务发现3. Fastapi 连接数据库4. Alembic 连接数据库5. 服务健康检查

2025-01-08 17:37:03 874

原创 python __getitem__ 魔法方法

在 Python 中,`__getitem__` 是一个特殊方法(也称为魔术方法或双下方法),它定义了序列类型(如列表、元组、字符串等)的索引行为。当你尝试通过索引访问一个对象的元素时,Python 会调用这个方法。

2024-12-09 16:40:11 618

原创 Pytorch 手写数字识别 深度学习基础分享

本篇是一次内部分享,给项目开发的同事分享什么是深度学习。用最简单的手写数字识别做例子,讲解了大概的原理。

2024-12-09 16:31:18 1091

原创 分享一个大模型请求api接口的巧用

自从Chatgpt横空出世以来,各种智能工具层出不穷,聊天、绘画、视频等各种工具帮助很多人高效的工作。作为一个开发者,目前常用应用包括代码自动填充,聊天助手等。这些是工具层面的使用,有没有将大模型和日常编码的前后端流程相结合使用的切入点呢?今天分享一个使用大模型自动调用api接口的示例,可以作为大模型在开发中的另一种使用场景。

2024-10-21 17:32:29 1437

原创 深度学习基础知识

简介:CUDA(Compute Unified Device Architecture)是由NVIDIA开发的一种并行计算平台和应用程序编程接口(API)。它允许开发人员利用NVIDIA的GPU(图形处理器)来加速各种计算任务,包括科学计算、机器学习、深度学习、数据分析等。NVIDIA是一个全球领先的计算技术公司,专注于设计和制造高性能计算设备。除了生产强大的GPU,NVIDIA还提供与其GPU配套使用的软件和工具,如CUDA。

2024-10-21 17:31:01 2053

原创 go语言实现mongodb数组过滤

mongodb查询中实现数组过滤有两种方法,分别是:1. 聚合查询 使用`$unwind`将数组打散,获取结果集后用`$match`筛选符合条件的数据,最后使用`$group`进行聚合获取最终结果集2. 普通查询 先筛选记录,然后通过投影查询过滤数组第二种方法简单易于操作,所以优先选择第二种方法。

2024-10-12 11:09:58 528 1

原创 mongo对文档中数组进行过滤的三种方法

想要实现数组的过滤有三种方法,包括:1. 聚合查询 使用`$unwind`将`travel`数组打散,获取结果集后用`$match`筛选符合条件的数据,最后使用`$group`进行聚合获取最终结果集2. 聚合查询 使用`$match`过滤符合条件的根文档结果集,然后使用`$projec`t返回对应字段的同时,在`travel`数组中使用`$filter`进行内部过滤,返回最终结果集3. 普通查询 先筛选记录,然后通过投影查询过滤数组

2024-10-12 10:57:13 1066

原创 一个小小空格问题引起的bug

在昨天的日常搬砖中遇到一个问题,耽搁了我大半天的时间,最后查明原因让我很无语。

2024-08-29 17:38:32 313

原创 目标追踪 ByteTrack 算法详细流程分析

ByteTrack是字节跳动与2021年10月份公开的一个全新的多目标跟踪算法,原论文是《ByteTrack: Multi-Object Tracking by Associating Every Detection Box》。ByteTrak的MOTA和FPS等指标上都实现了较好的性能,要优于现有的大多数MOT(多目标追踪)算法。

2024-08-21 17:40:33 1482 3

原创 记录一次物理专业编程大作业完成过程

有一天毕业多年的大学同学在班级微信群里问有没有人能帮忙写一段代码实现一个功能。我一看这段描述简直就头大了,程序员都比较害怕这种没有格式的文字,甚至连个换行都没有,说实话多看一眼就感觉莫名烦躁。我也就没敢讲话,即使有同学在群里已经开始点名了,也始终一言不发。

2024-08-12 18:07:03 1077

原创 yolov5 mAP计算代码分析

模型训练过程中每一轮都会计算P,R,mAP,[email protected]等数值,本篇分析这些数值的计算过程,分析最核心部分。我的感受是计算的过程比想象的复杂。

2024-08-06 16:40:08 1126 2

原创 《左耳听风 传奇程序员练级攻略》读书笔记

本书是程序员大牛陈皓的文章汇总,内容包括技术、沟通、工程师文化等,通读之后摘录其中精华部分。开卷有益,能读到摘录部分也会收益,当然最好是去读原文,知识转化效率更高。除本书之外,还有一些他的文章也非常值得阅读,包括程序员如何变现,如何学习英语主题等。

2024-07-26 11:30:04 400

原创 记录一次简单的模型训练分析过程

本篇是自己学习过程中的记录,使用的数据集比较小,主要是为了代码分析和简单的提点。代码分析的部分在之前的文章中已经总结了,本篇主要是结果分析和提升map的一些尝试,入门阶段,高手请绕行。

2024-07-22 09:56:23 316

原创 极大值抑制 nms 代码详解

NMS: 非极大值抑制(`Non-Maximum Suppression`),功能:从大量的预测结果中筛选出得分最高的结果。思路:NMS的主要思路是通过计算目标框之间的重叠度(即IOU,交并比)来剔除非最佳结果。

2024-07-17 09:58:36 1050

原创 yolov5 损失函数代码详解

模型的损失计算包括3个方面,分别是:定位损失、分类损失、置信度损失。本篇主要讲解yolov5中损失计算的实现,包括损失的逻辑实现,张量操作的细节等。

2024-07-16 16:53:16 1373

原创 yolov5 正样本可视化

yolov5 正样本可视化,分析正样本筛选3种规则,跨anchor预测,跨网格预测,跨分支预测。

2024-07-15 09:47:24 814

原创 yolov5 筛选正样本流程 代码多图详解

正样本全称是anchor正样本,正样本所指的对象是anchor box,即先验框。先验框:从YOLO v2 开始吸收了Faster RCNN的优点,设置了一定数量的预选框,使得模型不需要直接预测物体尺度与坐标,只需要预测先验框到真实物体的偏移,降低了预测难度。

2024-07-10 16:29:18 878 1

原创 yolov5 网络结构

本篇主要讲解yolov5的网络模型结构以及其代码实现。到yolov5为止,yolo系列的网络模型结构发展快速的是1,2,3三代,4,5逐渐稳定优化。

2024-07-05 10:10:02 2083

原创 数据增强mosaic实现

mosaic 是yolov4中提出的一个数据增强的方式,通过将4张图片拼接在一起送入训练,有效提升了模型的map

2024-07-02 09:53:31 2267

原创 yolov1-yolov5 网络结构&正负样本筛选&损失计算

学习yolo系列,最重要的,最核心的就是网络模型、正负样本匹配、损失函数等三个方面。本篇汇总了yolov1-yolov5等5个版本的相关知识点,主要看点是在yolo框架搭建。初学者可以通过相关篇章搭建自己的知识点框架,然后再深入各个知识点,就像攻克一个又一个山头。当大部分的知识点都了然于胸,yolo系列就算掌握了。

2024-06-24 15:03:51 1488

原创 prometheus 监控告警系统(对接飞书告警)

Prometheus 是一套开源的系统监控报警框架,非常适合大规模集群的监控。它也是第二个加入CNCF的项目,受欢迎度仅次于 Kubernetes 的项目。本文讲解完整prometheus 监控和告警服务的搭建。

2024-01-11 09:24:17 2484

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除