MATLAB中用nlinfit做多元非线性拟合(回归)

本文详细介绍了MATLAB中的多元非线性拟合功能nlinfit的使用方法,包括基本语法、参数说明及内置函数Hougen-Watsonmodel的应用示例,适合需要进行复杂数据拟合的科研人员和工程师参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MATLAB中有一个多元非线性拟合的功能是nlinfit
基本语法是:

beta = nlinfit(X,Y,modelfun,beta0)

式子左边的beta可以是一个向量,向量的元素就是要回归的模型中的参数。
式子右边,modelfun是要回归的函数形式。X是函数的自变量数据;Y是函数的因变量数据;beta0是待回归参数的初始值。

modelfun如果是MATLAB内置的函数形式,则直接使用,例如,内置的Hougen-Watson model,形式如下:
Hougen-Watson model

使用时,这么用

beta = nlinfit(X,Y,@hougen,beta0)

这里@是函数句柄的操作符。
因为Hougen-Watson model中有5个待回归的参数(β1\beta_{1}β1β2\beta_{2}β2β3\beta_{3}β3β4\beta_{4}β4β5\beta_{5}β5),因此beta0是一个1×5的向量。模型中有3个未知数,因此X是个n×3的矩阵,Y是n×1的矩阵。n是数据的条数。

如果modelfun不是MATLAB内置的函数,就需要自己建立一个函数的形式。例如,下面的语句:

modelfun = @(beta,x)((beta(1)*x1+(1-beta(1))*x2)*beta(2));

### 使用 `nlinfit` 实现多元非线性回归拟合 为了在 MATLAB 中执行多元非线性回归并利用 `nlinfit` 函数,需遵循特定流程来准备数据集以及指定合适的模型方程式。下面提供了一个详细的实例说明。 #### 定义非线性模型 假设存在一个依赖于多个独立变量 \( a \), \( b \), \( c \),\( d \) 的响应变量 \( y \)[^2]。目标是找到最佳参数向量使得预测值尽可能接近实际观测值。为此,先建立描述这种关系的数学表达式: ```matlab % 假设模型形式如下所示 mymodel = @(beta, data) beta(1)*data(:,1).^beta(2)+... beta(3)*exp(beta(4).*data(:,2))+... beta(5)*(sin(data(:,3))).*cos(data(:,4)); ``` 此代码片段定义了一种复杂的非线性组合方式作为基础模型[^2]。 #### 创建虚拟数据集 接下来构建一组用于训练的数据样本,这些数值应当反映真实世界中的情况或是通过实验获得的结果。 ```matlab rng('default') % 设置随机种子以便重现结果 N = 100; % 数据点数量 a = rand(N, 1); b = rand(N, 1); c = rand(N, 1); d = rand(N, 1); trueBeta = [2; -1.5; 3; 0.7; 1]; % 已知的真实参数(仅作测试用途) yTrue = mymodel(trueBeta,[a,b,c,d]); % 计算理论上的输出值 noise = normrnd(0,.1,N,1); % 添加噪声模拟测量误差 yObserved = yTrue + noise; ``` 上述过程生成了含有一定比例噪音干扰的理想化观察序列 `yObserved` 和对应的输入矩阵 `[a,b,c,d]`。 #### 执行非线性最小二乘估计 有了初步设定之后就可以调用 `nlinfit` 来求解未知参数了。这里还需要给定初始猜测值 `beta0` ,这有助于算法更快更稳定地收敛至全局最优解附近。 ```matlab initialGuesses = ones(size(trueBeta)); % 初始化为单位阵列 [betaEstimate,residuals,jacobian,CovB,mse,errorModelInfo]= ... nlinfit([a,b,c,d],yObserved,mymodel,initialGuesses); disp(['Estimated parameters:', num2str(betaEstimate')]) ``` 最终得到的是经过优化后的参数估值 `betaEstimate` 及其统计特性评估指标如残差平方和 `mse` 等信息[^4]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值