Given a binary tree, return the preorder traversal of its nodes' values.
For example:
Given binary tree {1,#,2,3}
,
1 \ 2 / 3
return [1,2,3]
.
Note: Recursive solution is trivial, could you do it iteratively?
这个以前练习的很熟,现在竟然快写不出来了。先序遍历,简单方法就使用两个while循环,开头的while循环一栈大小为条件,内层循环以当前
节点是否为空为条件。内层循环的内容是一直想左移动,并把节点入栈。先序的话,就是一边向左走,一边存入节点栈,并把节点的值也存进来。
内层循环跳出来之后,节点栈会有一个空的节点,需要拿出来。这里有一个疑问,就是,内层循环总是向左走,会不会总是在打印左子树的值。
其实不会,因为这个处理在跳出内层循环后,让栈顶的节点弹出,并把栈顶节点的右节点入栈。如果只有左子树,那么所有节点的右子树为空。那么内层循环只会执行一次,其余情况都无法进入循环体。这就是两层循环写法的其妙值处。
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public ArrayList<Integer> preorderTraversal(TreeNode root) {
ArrayList<Integer> res = new ArrayList<Integer>();
List<TreeNode> stack = new ArrayList<TreeNode>();
TreeNode tmp,node;
if(root==null)
{
return res;
}
// stack.add(tmp);
//res.add(tmp.val);
stack.add(root);
tmp = root;
while(stack.size()>0)
{
whilde(tmp!=null)
{
res.add(tmp.val);
tmp = tmp.left;
stack.add(tmp);
}
stack.remove(stack.size()-1);
if(stack.size()>0)
{
tmp = stack.get(stack.size()-1);
stack.remove(stack.size()-1);
tmp = tmp.right;
stack.add(tmp);
}
}
return res;
}
}
单层循环的写法,初始条件不同,外层循环的判断条件也有点不一样。
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public ArrayList<Integer> preorderTraversal(TreeNode root) {
ArrayList<Integer> res = new ArrayList<Integer>();
List<TreeNode> stack = new ArrayList<TreeNode>();
TreeNode tmp,node;
if(root==null)
{
return res;
}
//stack.add(root);
tmp = root;
while(stack.size()>0||tmp!=null)
{
if(tmp!=null)
{
res.add(tmp.val);
stack.add(tmp);
tmp = tmp.left;
}else
{
tmp = stack.get(stack.size()-1);
stack.remove(stack.size()-1);
tmp = tmp.right;
}
}
return res;
}
}