参考:Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文) - Jack-Cui - CSDN博客
一、概述
简单地说,K-近邻算法就是采用测量不同特征值之间的距离方法进行分类。
其工作原理是:
- 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。
- 输人没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征**最相似数据(最近邻)**的分类标签。
- 一般来说,我们只选择样本数据集中前K个最相似的数据,这就是K-近邻算法中K的出处,通常K是不大于20的整数。
- 最后 ,选择K个最相似数据中出现次数最多的分类,作为新数据的分类。
优点和缺点:
- 优点 : 精度高、对异常值不敏感、无数据输入假定。
- 缺点 : 计算复杂度高、空间复杂度高。
适用数据范围 :
- 数值型
- 标称型。
k-近邻算法的一般流程:
- 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
- 准备数据:使用Python解析、预处理数据。
- 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
- 测试算法:计算错误率。
- 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类。
二、代码实现(python3)
1.准备数据集
import numpy as np #导入科学计算包numpy
def createDataSet(): #创建数据集
#group:数据集,二维特征
group=np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
#labels:labels
labels=['A','A','B','B']
return group,labels
if __name__ == "__main__":
#创建数据集
group,labels=createDataSet()
#打印数据集
print(group)
print(labels)
输出
[[1. 1.1]
[1. 1. ]
[0. 0. ]
[0. 0.1]]
['A', 'A', 'B', 'B']
2.从文本文件中解析处理数据
对未知类别属性的数据集中的每个点依次执行以下操作:
(1)计算已知类别数据集中的点与当前点之间的距离;
我们使用欧氏距离公式,计算两个向量点之间的距离。即
d ( p , q ) = d ( q , p ) = ( q 1 − p 1 ) 2 + ( q 2 − p 2 ) 2 + ⋅ ⋅ ⋅ + ( q n − p n ) 2 d(p,q)=d(q,p)=\sqrt{ ( q_{1}-p_{1} )^{2}+( q_{2}-p_{2} )^{2}+\cdot \cdot \cdot +( q_{n}-p_{n} )^{2}} d(p,q)=d(q,p)=(q1−p1)2+(q2−p2)2+⋅⋅⋅+(qn