“机器学习实战”刻意练习——分类问题:K近邻算法

参考:Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文) - Jack-Cui - CSDN博客

一、概述

简单地说,K-近邻算法就是采用测量不同特征值之间的距离方法进行分类。

其工作原理是:

  • 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系
  • 输人没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征**最相似数据(最近邻)**的分类标签。
  • 一般来说,我们只选择样本数据集中前K个最相似的数据,这就是K-近邻算法中K的出处,通常K是不大于20的整数。
  • 最后 ,选择K个最相似数据中出现次数最多的分类,作为新数据的分类

优点和缺点:

  • 优点 : 精度高、对异常值不敏感、无数据输入假定。
  • 缺点 : 计算复杂度高、空间复杂度高。

适用数据范围 :

  • 数值型
  • 标称型

k-近邻算法的一般流程:

  1. 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
  2. 准备数据:使用Python解析、预处理数据。
  3. 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
  4. 测试算法:计算错误率。
  5. 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类。

二、代码实现(python3)

1.准备数据集

import numpy as np				#导入科学计算包numpy

def createDataSet():            #创建数据集
    #group:数据集,二维特征
    group=np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    #labels:labels
    labels=['A','A','B','B']
    return group,labels

if __name__ == "__main__":
    #创建数据集
    group,labels=createDataSet()
    #打印数据集
    print(group)
    print(labels)

输出

[[1.  1.1]
 [1.  1. ]
 [0.  0. ]
 [0.  0.1]]
['A', 'A', 'B', 'B']

2.从文本文件中解析处理数据

对未知类别属性的数据集中的每个点依次执行以下操作:

(1)计算已知类别数据集中的点与当前点之间的距离
我们使用欧氏距离公式,计算两个向量点之间的距离。即
d ( p , q ) = d ( q , p ) = ( q 1 − p 1 ) 2 + ( q 2 − p 2 ) 2 + ⋅ ⋅ ⋅ + ( q n − p n ) 2 d(p,q)=d(q,p)=\sqrt{ ( q_{1}-p_{1} )^{2}+( q_{2}-p_{2} )^{2}+\cdot \cdot \cdot +( q_{n}-p_{n} )^{2}} d(p,q)=d(q,p)=(q1p1)2+(q2p2)2++(qn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值