ABCnet——高精度二值化网络(Binary Neural Network)

ABCnet是一种高精度的二值化网络结构,旨在提高二值化卷积神经网络(BNNs)的准确性。通过使用二值化基的线性组合表示权重参数,结合STE求导方法处理二值化后的导数问题,并对输入进行量化,实现了multiplier-free计算。实验结果显示,ABCnet在Resnet18上对ImageNet2012的分类任务中,相比于原始网络和其他二值化网络,具有更高的推理精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

"Towards Accurate Binary Convolutional Neural Network"这篇文章提出了ABCnet,是一种表示精度较高的二值化网络结构(作为XNORnet的演进)。有关XNORnet及其优势可以参考论文:"XNORNet: ImageNet Classification Using Binary Convolutional Neural Networks"。

论文地址:https://arxiv.org/abs/1711.11294

ABCnet GitHub:https://github.com/layog/Accurate-Binary-Convolution-Network

XNORnet GitHub:https://github.com/ayush29feb/Sketch-A-XNORNet

 

1、权重参数二值化的线性组合

文章采用一组二值化基(binary filter base)的线性组合来表示网络层参数:

线性组合系数与二值化基的求解问题如下:

针对每个网络层,文章采用一组固定数值的矢量表示二值化基,并且由网络层参数的均值与标准差决定:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值