
【论文阅读】MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm
(回顾ing)。文档解析是一种基础技术,它将各种文档格式中的非结构化、多模态内容(包括文本、表格、图像、公式等)转换为结构化、机器可读的信息。这种能力支持广泛的现实应用,如自动化业务工作流、数字归档、智能教育和医疗记录管理,加速了以信息为中心的行业的数字化和自动化。现有的主要处理范式是pipeline-based和end-to-end,两者都有各自的优缺点,一些研究人员则是根据两者的优缺点进行联合处理。简要回顾一下两种处理范式的优缺点。



【论文阅读笔记】Lightweight Context-Aware Network Using Partial-Channel Transformation for Real-Time Semanti
基于部分通道变换的轻量级上下文感知网络实时语义分割PaperCode优化人工神经网络的计算效率对于自动驾驶系统等资源受限的平台至关重要。为了解决这一问题,本文提出了一种轻量级上下文感知网络(LCNet),该网络能够在保证推理速度和切分精度的前提下加速语义切分。LCNet引入了部分通道转换(PCT)策略,以最小化基本单元的计算延迟和硬件要求。在PCT模块内,三分支上下文聚合(TCA)模块扩展特征感受域,捕获多尺度上下文信息。此外,双注意力引导解码器(DD)恢复空间细节并提高像素预测精度。


【论文阅读】Slim Fly: A Cost Effective Low-Diameter Network Topology 一种经济高效的小直径网络拓扑
Slim Fly 一种高性能、经济高效的网络拓扑,它接近理论上的最佳网络直径。Slim Fly网络拓扑是基于一种图论方法,这种方法试图近似解决度-直径问题(degree-diameter problem)。度-直径问题是图论中的一个经典问题,指的是在给定图的度数(每个节点连接的边的数量)和直径(两个节点之间的最大最短路径长度)约束下,寻找具有最大节点数的图。换句话说,就是在限制网络中每个节点连接的数量(度)和网络的最大通信距离(直径)的条件下,设计一个尽可能大的网络。

