

CUDA详细安装及环境配置——环境配置指南 – CUDA+cuDNN+PyTorch 安装
本文详细介绍了如何确定显卡支持的CUDA版本、选择对应的cuDNN版本,并逐步安装CUDA、cuDNN和PyTorch。首先,通过命令行输入nvidia-smi.exe查看显卡支持的CUDA版本。接着,根据CUDA版本选择对应的cuDNN版本并下载。然后,从NVIDIA官方网站下载CUDA安装包,按照提示进行安装,并检查是否安装成功。同样地,下载cuDNN安装包,解压后将文件拷贝到CUDA安装目录中,并通过命令行验证安装是否成功。最后,根据PyTorch官网的指引,选择合适的安装命令进行PyTorch的安装


【Pytorch】基于LSTM-KAN、BiLSTM-KAN、GRU-KAN、TCN-KAN、Transformer-KAN(各种KAN修改一行代码搞定)的共享单车租赁预测研究(数据可换)Python
TCN是一种专门用于处理时间序列数据的卷积神经网络。它通过一维卷积和因果卷积(causal convolution)来确保模型输出的每个时间步只依赖于过去的信息,从而避免了未来信息的泄露。TCN还具有残差连接(residual connections)和扩张卷积(dilated convolutions)等特性,能够捕获长期依赖关系并减少训练过程中的梯度消失问题。KAN是一种注意力机制,旨在从输入数据中提取关键信息。
