

【LPSO-BP回归】基于改进莱维飞行和混沌映射的粒子群优化算法优化BP神经网络回归研究(Matlab代码实现)
BP神经网络是一种经典的多层前馈网络,通过反向传播算法调整权重和阈值以最小化预测误差,广泛应用于非线性系统建模和回归预测。局部最优陷阱:基于梯度下降的优化机制易陷入局部极小值,尤其在深层网络中表现显著。收敛速度慢:训练过程需逐层反向传播误差,计算复杂度高。参数敏感性强:初始权重随机生成,影响模型稳定性。数据依赖性高:对样本量和数据质量要求苛刻,冗余或矛盾样本会显著降低性能。为解决上述问题,研究者将粒子群优化算法(PSO)与BP结合,但传统PSO存在种群多样性不足、早熟收敛等问题。因此,本研究引入。
