【扩散对抗】AdvDiffuser: Natural Adversarial Example Synthesis with Diffusion Models

原文标题: AdvDiffuser: Natural Adversarial Example Synthesis with Diffusion Models
原文代码: https://github.com/lafeat/advdiffuser
发布年度: 2023
发布期刊: ICCV


摘要

Previous work on adversarial examples typically involves a fixed norm perturbation budget, which fails to capture the way humans perceive perturbations. Recent work has shifted towards natural unrestricted adversarial examples (UAEs) that breaks `p perturbation bounds but nonetheless remain semantically plausible. Current methods use GAN or VAE to generate UAEs by perturbing latent codes. However, this leads to loss of high-level information, resulting in low-quality and unnatural UAEs. In light of this, we propose AdvDiffuser, a new method for synthesizing natural UAEs using diffusion models. It can generate UAEs from scratch or conditionally based on reference images. To generate natural UAEs, we perturb predicted images to steer their latent code towards the adversarial sample space of a particular classifier. We also propose adversarial inpainting based on class activation mapping to retain the salient regions of the image while perturbing less important areas. On CIFAR-10, CelebA and ImageNet, we demonstrate that it can defeat the most robust models on the RobustBench leaderboard with near 100% success rates. Furthermore, Th

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值