
Apollo
Apollo
BRAND-NEO
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
百度Apollo规划决策模块学习记录-3 Apollo EM Planner算法
目录Lecture 6约束的分类Apollo EM Planner优化问题的关键EM Planner的主要步骤Apollo 无人车规划模块进展Lecture 6约束的分类Soft ConstraintsDecisionsBest TrajectoryHard ConstraintsTraffic RegulationsApollo EM Planner这部分在EM Planner的论文中更细致,课程里主要概括了一些核心思路但并不完整。之后有空的话把论文笔记整理出来.原创 2020-08-09 23:17:45 · 8864 阅读 · 1 评论 -
百度Apollo规划决策模块学习记录-2 平滑曲线及二次规划问题模型
Lecture 3 + Lecture 4 + Lecture 5车辆运动模型及SL坐标系运动模型为Ackermann模型,即自行车模型;SL坐标系即Frenet坐标系。模型和坐标系老生常谈了,这里就不记录啦。SL坐标系下曲线平滑度的要求平滑的体现:曲率在一定范围内连续变化SL系下曲线平滑程度很大程度上取决于道路中心线的平滑程度不能只平滑曲率,比如U-turn转弯时,如果仅对曲率进行平滑而不考虑xy坐标的话,很可能曲率平滑了但车辆会碰撞到马路边缘。用Smoothing Spline生原创 2020-08-09 21:39:04 · 8104 阅读 · 0 评论 -
百度Apollo规划决策模块学习记录-1 概述及基本算法
内容为百度技术学院apollo无人驾驶公开课的决策规划课程,资源在b站可以找到。目录Lecture 1对规划问题的理解对运动规划的理解从最简单的问题入手仍需考虑的问题运动规划的几个层次参考资料Lecture 2对路径的约束离散化ConfigurationPath Planning算法处理高维问题的方式无人车问题不是凸问题Lecture 1对规划问题的理解规划问题的本质是搜索寻找能够使f(x)最小化的x,即argmin f(x)在车辆运动规划问题中,这个问题具体化为给定车辆现在的.原创 2020-08-09 15:17:38 · 6939 阅读 · 0 评论