机器学习如何处理数据中的缺失值

本文介绍了几种常见的处理数据缺失值的方法,包括使用均值、特殊值填充缺失项,忽略含有缺失值的样本,利用相似样本均值填充以及采用机器学习算法预测缺失值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

处理数据缺失值的常见做法:

  1. 使用可用特征的均值来填补缺失值
  2. 使用特殊值来填补缺失值,如-1
  3. 忽略有缺失值的样本
  4. 使用相似样本的均值填补缺失值
  5. 使用机器学习算法预测缺失值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值