
LLM
文章平均质量分 95
FranzLiszt1847
大道如青天,我独不得出
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
RAG实践:Routing机制与Query Construction策略
在传统的 RAG 架构中,所有查询都走统一的 Retriever和 Prompt 模板,这在多源数据或多任务系统中存在检索结果不相关、内容不精准、用户意图模糊等局限性。为了解决这一问题,`Routing`机制可以根据用户提出的问题,智能地路由到最相关的知识源或处理流程中,以提升回答的精准性与效率。原创 2025-06-18 11:21:31 · 1105 阅读 · 0 评论 -
RAG实战—Query Transformations提升上下文召唤质量
在传统的 RAG 检索中,单一查询往往存在语义表达不充分、表述角度狭窄以及信息覆盖不全面等问题。这种局限容易导致向量检索阶段召回的上下文不准确,从而影响最终生成结果的质量。为了解决这些问题,`Query Transformations` 技术应运而生。它通过从多个语义视角对原始查询进行扩展和重构,有效提升了查询的表达能力和语义覆盖范围,弥补了信息缺失,为模型提供更丰富、更相关的上下文,引导生成结果更贴近用户意图。原创 2025-06-17 12:07:00 · 1143 阅读 · 0 评论 -
基于LangChain构建一个RAG多轮对话问答应用
在上一篇文章中,我们介绍了如何使用`OpenAI`的`ChatOpenAI`构建文本生成,但由于囊中羞涩,没有进一步探索。转而使用`Hugging Face`中的免费模型构建RAG。在本文中,我们采用`OpenAI`的聊天接口客户端`ChatOpenAI`,但并未直接使用`GPT`模型。而是通过本地代理的服务器,调用`ModelScope`社区中的模型完成RAG应用构建。原创 2025-06-12 22:40:32 · 1083 阅读 · 0 评论 -
基于LangChain构建一个简单的RAG应用
本项目旨在构建一个简单的RAG应用,不考虑性能因素,仅作为学习记录。跑通整个流程为主,以初步了解RAG的应用构建过程。原创 2025-06-12 09:17:38 · 962 阅读 · 0 评论