矩阵分解

下面谈谈矩阵分解的应用

SVD分解

可以看看我前面的一片博文http://blog.csdn.net/ningyaliuhebei/article/details/7104951


QR分解

       QR分解法是目前求一般矩阵全部特征值的最有效并广泛应用的方法,一般矩阵先经过正交相似变化成为Hessenberg矩阵,然后再应用QR方法求特征值和特征向量。它是将矩阵分解成一个正规正交矩阵Q与上三角形矩阵R,所以称为QR分解法,与此正规正交矩阵的通用符号Q有关。QR 分解经常用来解线性最小二乘法问题。

        在Matlab中,语法为[Q,R]=qr(A), 如果A是一个m×n的矩阵,其QR分解后,Q为一个m×m的矩阵,R是一个m×n的矩阵。 假定A是mxn的矩阵且列满秩,即rank(A)=n,那么A=QR在要求R的对角元为正实数的情况下是唯一的.如果不要求R的对角元为正实数,那么可以有其它的QR分解A=(QD)(DR),其中D是任何对角酉阵,可以证明只有这些QR分解.如果不是列满秩的话就没有上述唯一性了,除非对R的阶梯结构有额外要求.注意A的QR分解相当于对A的前k列张成的空间找正交基,从这里很容易理解什么时候会有唯一性.
        语法为[Q,R,perm] = qr(A,0),如果A是一个m×n的矩阵,当m≤n时,其QR分解后,Q为一个m×m的矩阵,R是一个m×n的矩阵。当m ≥n时,其QR分解后,Q为一个m×n的矩阵,R是一个n×n的矩阵。
       矩阵的QR分解有多种方法: Givens 旋转、Householder 变换,以及 Gram-Schmidt 正交化等。
QR分解的具体应用及意义:






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值