不定式

 

不定式作主语
It's necessary to complete the design before National Day
作宾语
I want to go at once.
可以接不定式短语的这类动词
like want try wish begin decide ask forget
promise hope love affer refuse

不定式: 除了固定用法外,"将来"、"主动"、"目的"
不定式具有名词、形容词、或副词的某些语法,又有动词的失态和语态
1、有些及物动词用不定式作宾语,结构动词+不定式
afford,aim,agree,arrange,ask,decide
The driver failded to see the other car in time.
He offered to help me.
动词除了可以用不定式作宾语,还用不定式作补语,动词+宾语+不定式
ask,choose,expect,help,beg,intend
I like to keep everything tidy
I want to speak to Tom.
有些动词或动词词组可以用动词+疑问词+不定式的结构做宾语
decide,know,consider,forget,learn,remember
Please show us how to do that
省去to的动词不定式
1 情态动词
2 使役动词 let have make 后,感官动词 see watch look at, notice ,observe,hear,listen to ,smell
feel,find
I saw him dance 我看见他跳舞 == He was seen to dance
The boss made them work the whole night. 老板让他们整夜的干活
=They were made to work the whole night.
3 would rather,had better 句型
4 Why.../why not
5 help 可以带to,也可以不带to
6 but,except后, but前是实义动词,后面出现的不定式不带to
He wants to do nothing but go out.
He wants to do nothing but to take the medicine.
7 and / or / than连接两个不定式,第二个to可以省掉
8 discover imagine suppose think 等作宾补时,可以省去to be
He is supposed (to be) nice.

 

 

 

 

非谓语动词(不定式)讲解及练习

The Minister of Finance is believed __B__ of imposing new taxes to raise extra revenue.
A.that he is thinking   
B.to be thinking
C.that he is to think  
D.to think


非谓语动词的用法和区别
1、不定式:具有n. adj. adv.特征,在句子中担任除谓语外任何成分
2、动名词:具有n. 特征,在句子中可作主语、宾语、定语、表语
3 分词: 具有adj. adv. 特征,在句子中可作为主语、宾语、状语
to do(not to do) 一般式
to be doing 进行式
to have done 完成式
to have been doing 完成进行式
to be done 一般式
to have been done 完成式
1 I'm glad to see you.同时发生
2 They invited us to come to a party(不定式动作后发生)
3 The computer to be produced is of a new type(被动)
4 You must promise never to do that again.
*进行式:谓语动词表示的动作发生时,不定式表示的动作正在进行
1 They are said to be building another bridge over the river.
 据说他们正在这条河上修另一座大桥
2 I'd rather read than watch television ; the program seem to be getting worse all the time.
*完成式:不定式表示的动作发生在谓语动词表示的动作之前
1 The bank is reported in the local newspaper to have been reobbed in broad daylight yesterday.
2 They were reported to have discovered another ancient tomb in this area.
*完成进行式:在谓语动词表示的动作发生前,不定式表示的动作一直在进行
1 They are said to have been collection folk songs there.
*不定式作主语通常要转换成"It + is/was + adj./n. + 不定式(短语)"
To master a foreign language is not easy.
== It's not easy to master a foreign language.

 

内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除多余空格和根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量和指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序与释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序和清理。 阅读建议:由于本资源涉及较多底层概念和技术细节,建议读者先复习C语言基础知识,特别是指针和内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解和掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
<think>好的,我现在需要帮用户解决如何用计算机程序求解不定式方程的问题。首先,得明确什么是不定式方程,通常指的是形如ax + by = c的线性不定方程,解为整数的情况。用户可能希望找到算法或编程方法来自动求解这类方程。 接下来,我需要考虑用户可能的背景。他们可能是编程初学者,或者有一定数学基础但需要具体的实现方法。因此,回答需要兼顾算法原理和实际代码示例,同时保持步骤清晰。 首先想到的是扩展欧几里得算法,这是求解线性不定方程的基础。需要解释该算法的原理,并说明如何用它找到特解,再扩展到一般解。同时,可能需要处理无解的情况,比如c不是gcd(a,b)的倍数时。 然后,用户可能需要具体的代码实现。Python是一个常用的语言,所以用Python示例比较合适。需要展示扩展欧几里得算法的实现,以及如何利用它来求解方程。同时,处理正负号的情况,确保解的多样性。 另外,可能还需要提到其他方法,比如穷举法,但指出其效率问题,适用于小范围的情况。给出一个简单的穷举代码示例,但提醒用户注意性能限制。 还要注意用户的要求,比如避免使用第一人称,分步骤说明,每个方法之间换行。同时,代码和公式的格式要正确,数学公式用$或$$包裹,代码用三个反引号注明语言类型。 最后,生成相关问题时要基于原问题和回答内容,可能涉及更复杂的方程类型、不同编程语言的实现,或者算法优化的问题。确保问题有相关性,帮助用户进一步探索。</think>针对不定式方程 $ax + by = c$ 的计算机求解方法,可通过以下两种典型方式实现: **扩展欧几里得算法** 当方程满足 $gcd(a,b) | c$ 时存在整数解,扩展欧几里得算法可求得特解 $(x_0,y_0)$。算法实现包含递归求解方程 $ax + by = gcd(a,b)$ 的过程: ```python def extended_gcd(a, b): if b == 0: return (a, 1, 0) else: g, x1, y1 = extended_gcd(b, a % b) x = y1 y = x1 - (a // b) * y1 return (g, x, y) ``` 通过该算法得到基础解后,通解形式为: $$x = x_0 \cdot \frac{c}{g} + \frac{b}{g}t$$ $$y = y_0 \cdot \frac{c}{g} - \frac{a}{g}t$$ 其中 $t$ 为任意整数,$g = gcd(a,b)$ **有限范围穷举法** 当系数较小时可采用双重循环遍历可能解: ```python def find_solution(a, b, c, limit=100): for x in range(-limit, limit+1): for y in range(-limit, limit+1): if a*x + b*y == c: return (x, y) return None ``` 此方法时间复杂度为 $O(n^2)$,适用于小规模系数场景 实际应用中推荐优先使用扩展欧几里得算法,时间复杂度为 $O(\log(\min(a,b)))$。需注意处理系数为负数的情况,可通过取绝对值并调整解符号实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值