嵌入式系统滤波算法大全:从原理到代码实现
在嵌入式系统开发中,滤波算法是处理传感器数据、抑制噪声、提高系统稳定性的关键技术。本文将全面介绍嵌入式开发中常用的滤波算法,包括PID控制、卡尔曼滤波、一阶/二阶滤波等,提供可直接调用的通用代码实现,并详细分析各种算法的适用场景和核心区别。
一、基础滤波算法
1. 移动平均滤波(Moving Average Filter)
适用场景:适用于缓慢变化的信号,如温度、压力等环境参数的平滑处理。能有效抑制随机噪声,但对脉冲干扰和快速变化信号响应滞后。
代码实现:
#define WINDOW_SIZE 10
typedef struct {
float buffer[WINDOW_SIZE];
uint8_t index;
float sum;
} MovingAverageFilter;
float moving_average_update(MovingAverageFilter* filter, float new_value) {
// 减去即将被替换的旧值
filter->sum -= filter->buffer[filter->index];
// 添加新值并更新总和
filter->sum += new_value;
filter->buffer[filter->index] = new_value;
filter->index = (filter->index + 1) % WINDOW_SIZE;
return filter->sum / WINDOW_SIZE;
}
// 初始化函数
void moving_average_init(MovingAverageFilter* filter) {
memset(filter->buffer, 0, sizeof(filter->buffer));
filter->index = 0;
filter->sum = 0;
}
特点分析:
- 优点:实现简单,计算量小,适合资源有限的嵌入式系统
- 缺点:引入滞后,窗口越大平滑效果越好但滞后越明显
- 变体:加权移动平均(给近期数据更高权重)
2. 中值滤波(Median Filter)
适用场景:有效去除脉冲干扰(如开关噪声、传感器偶发错误),适用于存在突发异常值的信号处理,如按键检测、工业设备状态监测等。
代码实现:
#define MEDIAN_WINDOW 5 // 建议使用奇数
float median_filter(float* input) {
float sorted[MEDIAN_WINDOW];
memcpy(sorted, input, sizeof(sorted));
// 冒泡排序
for(int i = 0; i < MEDIAN_WINDOW-1; i++) {
for(int j = 0; j < MEDIAN_WINDOW-i-1; j++) {
if(sorted[j] > sorted[j+1]) {
float temp = sorted[j];
sorted[j] = sorted[j+1];
sorted[j+1] = temp;
}
}
}
return sorted[MEDIAN_WINDOW/2]; // 返回中值
}
// 使用示例
float sensor_readings[MEDIAN_WINDOW] = {
23.4, 22.8, 130.5, 23.1, 22.9}; // 假设130.5是异常值
float valid_value = median_filter(sensor_readings); // 返回23.1
优化技巧:
- 对于实时系统,可采用更高效的排序算法(如插入排序)
- 结合移动平均滤波使用,先中值去脉冲再平均平滑
3. 限幅滤波(Limit Filter)
适用场景:已知信号变化速率的场景,如电机转速监测、缓慢变化的物理量测量。可防止因干扰导致的数值突变。
代码实现:
typedef struct {
float last_value;
float max_delta;
} LimitFilter;
float limit_filter_update(LimitFilter* filter, float new_value) {
float delta = new_value - filter->last_value;
<