Pytorch安装(GPU版本)

本文详细介绍如何在配备合适GPU的计算机上安装CUDA和cuDNN,并通过Pytorch验证安装是否成功。首先检查GPU是否符合要求,然后安装CUDA及其对应版本的cuDNN,最后通过Pytorch测试CUDA功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、检查是否具有合适的GPU, 如有则安装Cuda,Cudnn

(1)检查电脑是否有合适的GPU

在桌面上右击如果能找到NVIDA控制面板,则说明该电脑有GPU。控制面板如下,并通过查看系统信息获取支持的Cuda版本。

在这里插入图片描述
在这里插入图片描述
(2)下载Cuda

官网:https://developer.nvidia.com/cuda-10.1-download-archive-update2

在https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html 这里可以查询到我们应该下载哪个版本

在这里插入图片描述
然后,根据实际情况选择合适的版本

查看cuda的历史版本

在这里插入图片描述
在这里插入图片描述
点击需要下载的版本。

在这里插入图片描述
CUDA10的安装包可直接从NVIDIA官网下载。

根据相应的系统选项,我选择的是cuda_10.1.243_426.00_win10.exe(大小为2.5G),安装的时候建议选择自定义 而不是“精简”(从下面的英文解释可以看出,其实这里的精简写成完整应该更贴切,它会安装所有组件并覆盖现有驱动,然而我并不想安装全家桶,何况我的官方显卡驱动比它的新)。
(3)cuda安装

双击exe安装包

在这里插入图片描述
在这里插入图片描述
点击同意并继续

在这里插入图片描述
选择自定义模型
在这里插入图片描述
默认勾选驱动程序组件
在这里插入图片描述
默认安装位置,下一步
在这里插入图片描述
等待安装
在这里插入图片描述
至此安装完成。

注意:cuda的环境变量会自动进行配置。

在这里插入图片描述
(4)查看是否安装成功。

win+R,打开cmd窗口,输入nvcc –V,显示CUDA版本信息,安装成功

2.安装cuDNN

cuda安装完成之后,还需要下载与CUDA对应的相应版本的cuDNN,到下图所示的下载页面,下载完成后,将这个压缩包里的所有文件放到CUDA10安装目录相应文件夹下即可。

下载地址:

https://developer.nvidia.com/rdp/cudnn-download

在这里插入图片描述
点击10.1版本的cuDnn
在这里插入图片描述
下载之后,

(1)解压:会生成cuda/include、cuda/lib、cuda/bin三个目录;
在这里插入图片描述
(2)分别将cuda/include、cuda/lib、cuda/bin三个目录中的内容拷贝到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1对应的include、lib、bin目录下即可。

注意:不是替换文件夹,而是将文件放入对应的文件夹中
在这里插入图片描述
添加环境变量:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\lib\x64

此电脑→“高级系统设置”→“环境变量”→“系统变量”→“path”→“编辑”→“新建”加入该路径即可。

在这里插入图片描述
3.Pytorch安装

设置清华源:

### 设置清华源镜像
 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
 conda config --set show_channel_urls yes
### 设置pytorch镜像
 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/

获取pytorch的安装命令:

注意要把后面的-c pytorch去掉,不然还是使用的默认源下载。

conda install pytorch torchvision cudatoolkit=10.1

在这里插入图片描述
在这里插入图片描述
测试Pytorch与cuda是否安装成功:
打开pycharm,输入如下代码:

import torch
print(torch.cuda.is_available())

返回True证明成功了。

安装PyTorchGPU版本,首先需要确保你的电脑具备支持CUDA的显卡。根据引用中提到的,你的电脑使用的是GeForce MX150显卡,它是支持CUDA的。 接下来,需要按照以下步骤安装PyTorchGPU版本: 1. 首先,下载并安装适用于你的CUDA版本的CUDA Toolkit。CUDA Toolkit是一个用于支持GPU计算的软件开发工具包。你可以从NVIDIA官方网站上下载与你的CUDA版本相对应的Toolkit。 2. 安装CUDA Toolkit后,打开Anaconda Prompt,输入以下命令来创建一个新的虚拟环境(可选步骤): ``` conda create --name myenv ``` 其中,"myenv"是你给虚拟环境起的名字,你可以根据自己的需求进行命名。 3. 激活刚才创建的虚拟环境: ``` conda activate myenv ``` 4. 接下来,使用conda命令来安装PyTorchGPU版本。根据引用中提到的,选择适合你的PyTorch和torchvision版本。例如,如果你安装PyTorch的1.4.0版本和torchvision的0.5.0版本,可以使用以下命令: ``` conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=<your_cuda_version> -c pytorch ``` 其中,"<your_cuda_version>"是你所安装的CUDA Toolkit的版本号。 5. 等待安装完成后,就成功安装PyTorchGPU版本。 总结一下安装PyTorchGPU版本的步骤: 1. 确保你的电脑具备支持CUDA的显卡。 2. 下载并安装适用于你的CUDA版本的CUDA Toolkit。 3. (可选步骤)创建一个新的虚拟环境。 4. 激活虚拟环境。 5. 使用conda命令安装PyTorchGPU版本。 希望这些步骤对你有帮助!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪子私房菜

给小强一点爱心呗

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值