分治-Acwing-逆序对的数量

本文介绍了一种高效计算逆序对数量的方法,通过分治策略结合归并排序,将时间复杂度降至O(nlogn),适用于大规模数据处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分治-Acwing-逆序对的数量

题目:

给定一个长度为n的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i < j 且 a[i] > a[j],则其为一个逆序对;否则不是。

输入格式
第一行包含整数n,表示数列的长度。

第二行包含 n 个整数,表示整个数列。

输出格式
输出一个整数,表示逆序对的个数。

数据范围
1≤n≤100000
输入样例:
6
2 3 4 5 6 1
输出样例:
5

题解:

首先,最暴力的做法,两重循环i,j遍历数组a,对每一个a[i],遍历出剩下所有的a[j]<a[i],O(n2)。首先,最暴力的做法,两重循环i,j遍历数组a,对每一个a[i],遍历出剩下所有的a[j]<a[i],O(n^2)。i,ja,a[i],a[j]<a[i]O(n2)

考虑分治法优化,对区间[l,r]之间的逆序对的数量,可以分为三个部分:①、i,j在区间[l,mid],②、i,j在区间[mid+1,r]之间,③、i在[l,mid]中,j在[mid+1,r]中。考虑分治法优化,对区间[l,r]之间的逆序对的数量,可以分为三个部分:\\①、i,j在区间[l,mid],②、i,j在区间[mid+1,r]之间,③、i在[l,mid]中,j在[mid+1,r]中。[l,r]i,j[l,mid]i,j[mid+1,r]i[l,mid]j[mid+1,r]

对于第③部分,由于a[i],a[j]分居两边,因此将两边区间有序与否不会影响逆序对数量的统计,所以可以将两边区间排序后再统计,这样可以将第三部分的复杂度降到O(log2n)。对于第③部分,由于a[i],a[j]分居两边,因此将两边区间有序与否不会影响逆序对数量的统计,\\所以可以将两边区间排序后再统计,这样可以将第三部分的复杂度降到O(log_2n)。a[i],a[j]O(log2n)

而①、②两部分,可以通过分治的方法,转化到第③部分。而①、②两部分,可以通过分治的方法,转化到第③部分。

这其实是一个归并排序的过程,边排序边计算。整个复杂度O(nlog2n)。这其实是一个归并排序的过程,边排序边计算。整个复杂度O(nlog_2n)。O(nlog2n)

在这里插入图片描述
如上图,若a[i]>a[j],那么从下标i到mid的所有元素都大于a[j],数量为mid−i+1。如上图,若a[i]>a[j],那么从下标i到mid的所有元素都大于a[j],数量为mid-i+1。a[i]>a[j]imida[j]midi+1


归并排序模板:

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
const int N=1e5+10;
int tmp[N];
void merge_sort(int q[],int l,int r)
{
    if(l>=r) return;

    int mid=l+r>>1;

    merge_sort(q,l,mid),merge_sort(q,mid+1,r);

    int i=l,j=mid+1;
    int k=0;

    while(i<=mid&&j<=r)
        if(q[i]<=q[j]) tmp[k++]=q[i++];
        else tmp[k++]=q[j++];
    while(i<=mid) tmp[k++]=q[i++];
    while(j<=r) tmp[k++]=q[j++];

    for(int i=l,j=0;i<=r;i++,j++) q[i]=tmp[j];

}
int main()
{
    int n,a[100010];
    scanf("%d",&n);
    for(int i=0;i<n;i++) scanf("%d",&a[i]);
    merge_sort(a,0,n-1);
    for(int i=0;i<n;i++) printf("%d ",a[i]);
    return 0;
}

本题代码:

注意:
由于数据范围是105,当数组是逆序时,最大答案达到(n−1)(n−2)2,大约在5×109爆了int,故答案用ll存。由于数据范围是10^5,当数组是逆序时,最大答案达到\frac{(n-1)(n-2)}{2},大约在5×10^9爆了int,故答案用ll存。1052(n1)(n2),5×109intll

#include<iostream>
#include<algorithm>
#include<cstdio>
#define ll long long
using namespace std;
const int N=1e5+10;
int tmp[N];
ll ans;
void merge_sort(int q[],int l,int r)
{
    if(l>=r) return;

    int mid=l+r>>1;

    merge_sort(q,l,mid),merge_sort(q,mid+1,r);//左半区间+右半区间

    int i=l,j=mid+1;
    int k=0;

    while(i<=mid&&j<=r)
        if(q[i]<=q[j]) tmp[k++]=q[i++];
        else
        {
            tmp[k++]=q[j++];
            ans+=mid-i+1;//统计答案
        }
    while(i<=mid) tmp[k++]=q[i++];
    while(j<=r) tmp[k++]=q[j++];

    for(int i=l,j=0;i<=r;i++,j++) q[i]=tmp[j];

}
int main()
{
    int n,a[100010];
    scanf("%d",&n);
    for(int i=0;i<n;i++) scanf("%d",&a[i]);
    merge_sort(a,0,n-1);
    cout<<ans<<endl;
    //for(int i=0;i<n;i++) printf("%d ",a[i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值