1、模糊逻辑与专家系统应用中的神经网络技术

模糊逻辑与专家系统应用中的神经网络技术

1. 神经网络与模糊逻辑概述

受人类大脑结构的启发,人工神经网络凭借直接从数据中学习来解决复杂或棘手问题的能力,被广泛应用于模式识别、优化、编码、控制等领域。它通常由大量相互连接的简单处理单元(神经元)组成,通过根据输入数据调整连接强度来学习解决问题。而且,神经网络能够通过学习轻松适应新环境,处理噪声、不一致、模糊或概率性的信息。

模糊逻辑与神经网络有多种结合方式,形成的混合系统常被称为模糊神经网络,可分为以下几类:
1. 具有学习能力的模糊规则系统;
2. 用网络架构表示的模糊规则系统;
3. 用于模糊推理的神经网络;
4. 模糊化的神经网络;
5. 其他方法。

不过,将特定的模糊神经网络准确分类并非易事,可能存在不同的分类观点。

2. 模糊神经网络技术及其应用

2.1 模糊分类与模糊建模

非模糊神经网络和模糊化神经网络可用于模糊分类和模糊建模任务。这里的模糊建模是指用非线性模糊数值函数进行建模。同时,还介绍了如何扩展前馈神经网络以处理训练数据的模糊性。
- 模糊分类学习 :通过特定的学习算法,让神经网络学习如何对模糊数据进行分类。
- 模糊建模学习 :调整网络参数,使神经网络能够建立模糊模型。

2.2 基于区间算术的神经网络

  • 区间算术在神经网络中的应用 :在神经网络中引入区间算术,处理输入数据的不确定性。
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值