模糊逻辑与专家系统应用中的神经网络技术
1. 神经网络与模糊逻辑概述
受人类大脑结构的启发,人工神经网络凭借直接从数据中学习来解决复杂或棘手问题的能力,被广泛应用于模式识别、优化、编码、控制等领域。它通常由大量相互连接的简单处理单元(神经元)组成,通过根据输入数据调整连接强度来学习解决问题。而且,神经网络能够通过学习轻松适应新环境,处理噪声、不一致、模糊或概率性的信息。
模糊逻辑与神经网络有多种结合方式,形成的混合系统常被称为模糊神经网络,可分为以下几类:
1. 具有学习能力的模糊规则系统;
2. 用网络架构表示的模糊规则系统;
3. 用于模糊推理的神经网络;
4. 模糊化的神经网络;
5. 其他方法。
不过,将特定的模糊神经网络准确分类并非易事,可能存在不同的分类观点。
2. 模糊神经网络技术及其应用
2.1 模糊分类与模糊建模
非模糊神经网络和模糊化神经网络可用于模糊分类和模糊建模任务。这里的模糊建模是指用非线性模糊数值函数进行建模。同时,还介绍了如何扩展前馈神经网络以处理训练数据的模糊性。
- 模糊分类学习 :通过特定的学习算法,让神经网络学习如何对模糊数据进行分类。
- 模糊建模学习 :调整网络参数,使神经网络能够建立模糊模型。
2.2 基于区间算术的神经网络
- 区间算术在神经网络中的应用 :在神经网络中引入区间算术,处理输入数据的不确定性。
- <