模糊神经网络技术及其应用
1. 引言
模糊逻辑和神经网络以多种方式相互结合,这种结合而成的混合系统通常被称为模糊神经网络。模糊神经网络可以分为以下几类:
1. 具有学习能力的模糊规则系统。
2. 由网络架构表示的模糊规则系统。
3. 用于模糊推理的神经网络。
4. 模糊化的神经网络。
5. 其他方法。
对特定的模糊神经网络进行分类并非易事,并且可能存在不同的分类观点。
1.1 具有学习能力的模糊规则系统
这类模糊神经网络本质上是模糊规则系统,其中模糊“如果 - 那么”规则通过类似于神经网络学习的迭代学习算法(如反向传播算法)进行调整。一般来说,具有(n)个输入和单个输出的模糊“如果 - 那么”规则可以写成:
如果(x_1)是(A_{j1})且(x_2)是(A_{j2})且…且(x_n)是(A_{jn}),那么(y)是(B_j),(j = 1,2,\cdots,N)。
其中(x = (x_1, x_2, \cdots, x_n))是(n)维输入向量,(y)是输出变量,(A_{j1},\cdots, A_{jn})和(B_j)是模糊集。在这类模糊神经网络中,每个模糊“如果 - 那么”规则的前件模糊集和后件模糊集的隶属函数以类似于神经网络的方式进行调整。
通常,模糊“如果 - 那么”规则中的模糊集会关联一些语言标签,如“小”和“大”。例如,一个具有两个输入和单个输出的模糊“如果 - 那么”规则可以是:如果(x_1)是小且(x_2)是大,那么(y)是小。
在简化版本的模糊“如果 - 那么”规则中,后件部分使用实数代替模糊数(B_j),即:
如果(