模糊神经网络技术详解
1. 区间算术神经网络概述
区间算术神经网络具有区间输入向量、区间连接权重和区间目标向量。其学习过程是通过更新区间连接权重和偏置的上下限来完成的,可用于近似实现区间向量的非线性映射,即从区间向量到区间向量的映射。
2. 模糊化神经网络
2.1 神经网络中的模糊算术
在多层前馈神经网络的模糊化过程中,输入、连接权重、偏置和目标被扩展为模糊数。基于扩展原理的模糊算术用于定义模糊化神经网络的输入 - 输出关系。
- 模糊数表示 :用带波浪号的大写字母表示模糊数,如 $\tilde{A}$、$\tilde{B}$、$\tilde{C}$ 等。模糊数 $\tilde{A}$ 由其在实数集上的隶属函数 $\mu_{\tilde{A}}()$ 确定。例如,“about 5” 和 “about 10” 可看作模糊数,像 “small” 和 “large” 等语言值也被视为模糊数。
- 模糊数运算 :在模糊化神经网络中使用以下模糊数的加法、乘法和非线性映射运算:
- $\mu_{\tilde{A}+\tilde{B}}(z) = \max{\mu_{\tilde{A}}(x) \land \mu_{\tilde{B}}(y) | z = x + y}$
- $\mu_{\tilde{A}\cdot\tilde{B}}(z) = \max{\mu_{\tilde{A}}(x) \land \mu_{\tilde{B}}(y) | z = x\cdot y}$
- $\mu_{f(\tilde{A})}(z) = \max{\m