模糊神经网络技术与模糊系统实现
1. 模糊神经网络的信息桥梁作用
模糊神经网络能够将数值信息进行处理,同时也可从经数值信息训练的神经网络中提取语言知识。它就像一座桥梁,连接了数值信息和语言信息这两种不同类型的信息。
2. 模糊神经网络相关研究成果
众多研究者在模糊神经网络领域取得了丰富的研究成果,以下列举部分研究:
|序号|研究者|研究内容|
| ---- | ---- | ---- |
|1|S. C. Lee和E. T. Lee|提出模糊神经网络相关理论|
|2|H. Ishibuchi|进行模糊神经网络的开发|
|3|D. E. Rumelhart等|研究通过误差反向传播学习表示|
|4|H. Nomura等|提出用下降法学习模糊推理规则的方法|
|5|J.-S. R. Jang|实现自适应网络模糊推理系统(ANFIS)|
这些研究涉及到模糊神经网络的各个方面,包括理论基础、学习算法、应用场景等。例如,S. Horikawa等人研究了使用误差反向传播算法的模糊神经网络进行模糊建模;C.-T. Lin和C. S. G. Lee提出了基于神经网络的模糊逻辑控制系统等。
3. 模糊系统的发展与应用
在20世纪60年代,Zadeh基于模糊集和模糊逻辑开发了一种语言方法,用于处理语言模糊信息。此后,该方法在气象学、工程、医学、管理、计算机科学、专家系统和系统科学等多个领域得到了广泛应用。
在系统科学领域,许多复杂的系统由于其非线性、时变行为和不精确的测量信息,难以用传统的精确数学方程来处理。然而,人类操作员可以凭借实际经验,利用