7、模糊系统实现:带额外或层的模糊神经网络设计与应用

模糊系统实现:带额外或层的模糊神经网络设计与应用

1. 引言

在模糊系统建模与控制领域,为解决高阶模糊系统在神经网络实现中对硬件要求高、学习速度慢的问题,提出了一种新的模糊系统。该系统基于Takagi - Sugeno模糊系统改进,引入了额外的或(OR)层,使得局部线性系统可关联多个输入模糊区域,适合高阶复杂系统建模与控制,且具备规则生成能力。

2. 输入维空间划分

输入维子空间划分是一种传统的模糊划分方法,先将输入空间的每个维子空间划分为多个模糊区域,输入模糊划分是所有输入维子空间划分的乘积,划分依赖于隶属函数的形状。

以二维输入模糊系统为例,输入向量$x = [x_1, x_2]^T$,假设在维度1有三个模糊集$A_1$、$A_2$、$A_3$,隶属函数分别为$\mu_{A_1}(x_1)$、$\mu_{A_2}(x_1)$、$\mu_{A_3}(x_1)$;在维度2有两个模糊集$B_1$、$B_2$,隶属函数分别为$\mu_{B_1}(x_2)$、$\mu_{B_2}(x_2)$,隶属函数形式为:
[
\mu_{ij}(x_i) = \exp\left(-\frac{(x_i - w_{ij})^2}{2\sigma_{ij}^2}\right)
]

模糊规则的前提条件如下:
- $R_1$:如果$x_1$是$A_1$且$x_2$是$B_1$,则…
- $R_2$:如果$x_1$是$A_1$且$x_2$是$B_2$,则…
- $R_3$:如果$x_1$是$A_2$且$x_2$是$B_1$,则…
- $R_4$:如果$x_1$是$A_2$且$x_2$是$B_2$,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值