软计算范式下的专家系统:融合与创新
知识基网络
知识基网络在专家系统设计中具有重要地位。部分知识基网络通过体现直接和互补输入信号来捕捉抑制和兴奋特性,并采用完全监督学习。例如,Hirota和Pedrycz利用模糊聚类来开发几何结构,进而设计知识基网络。
多数模型主要关注通过模糊神经网络对初始知识进行编码,然后在训练过程中进行细化。一些研究尝试在该框架下提取模糊规则,如文献中提到的相关工作还实现了推理、查询和解释功能。
Mitra等人最近设计了一个用于分类和规则生成的基于知识的神经模糊系统。该方法属于融合方法的第一类,其操作步骤如下:
1. 利用先验类信息(及其补集)和特征空间中模式点的分布,将粗略的初始领域知识编码到连接权重中。
2. 对连接输出层和隐藏层的链接进行准确估计(根据前一层的链接权重和节点激活情况)。
3. 输入、输出和学习方案与相关研究类似。
4. 结合节点增长和链接修剪来生成最优网络架构。
5. 进行推理、查询和规则生成,例如用于元音识别和肝胆疾病诊断。
6. 还能生成负规则,适用于无法获得正规则的模糊情况。该知识基网络的性能优于未纳入初始知识的模型。
其他混合模型
- 粗糙集
- Yasdi的方法 :Yasdi尝试将粗糙集作为构建神经网络的工具。其方法流程为:
- 通过粗糙集学习从训练示例中生成规则。
- 将规则的依赖因子映射到四层神经网络的单层连接权重中。输入和输出层采用固定二进制权
- Yasdi的方法 :Yasdi尝试将粗糙集作为构建神经网络的工具。其方法流程为: