模糊神经网络在模型参考控制系统中的应用
在控制领域,如何高效、精准地控制复杂系统一直是研究的热点。近年来,模糊神经网络(FNN)在模型参考控制系统中的应用展现出了巨大的潜力。本文将深入探讨基于均值的功能推理技术以及模糊神经网络系统在模型参考控制中的应用。
基于均值的功能推理技术
在控制理论中,功能推理技术是实现智能控制的重要手段。除了常见的基于输入数据的功能推理和简化推理方案外,还提出了一种基于均值的功能推理方案。在这种方案中,结论由前件中每个隶属函数的均值函数组成。
通过变结构系统(VSS)控制理论,可以合理地设计这些功能推理方案结论中的常数参数。此外,利用这些功能推理方案开发了一些模糊神经网络控制器。研究证明,使用基于均值的功能推理方案的模糊神经网络,与基于输入数据的功能推理和通常的简化推理方案相比,能够显著减少结论中的学习参数数量。
近期,提出了一种随机模糊控制方法,该方法将上述结果作为特殊情况包含在内。这种方法基于所谓的多模型自适应控制,与传统的基于模型的控制密切相关。所提出的随机模糊控制器可以设计为传统的随机控制,由静态模糊观测器部分和反馈增益部分组成。而且,这种类型的模糊控制器可以通过鲁棒控制方法确保受控系统的有界稳定性,而不是确保理想的渐近稳定性。
模糊神经网络系统在模型参考控制中的应用
模型参考控制系统概述
提出了一种使用模糊神经网络(FNN)的模型参考控制系统,该系统属于间接自适应控制。受控对象由模糊神经网络标识符(FNNI)进行识别,它可以近似系统并为模糊神经网络控制器(FNNC)提供对象的灵敏度。这是一个真正的自适应系统,能够学习控制复杂系统并适应对象参数的广泛变化。与大