27、回归选择、反向传播与模糊模型的融合应用

回归选择、反向传播与模糊模型的融合应用

1. 回归选择与反向传播的结合

在处理小波网络时,我们可以使用之前提到的任何程序来初始化小波网络(85)。之后,通过反向传播程序对该网络进行进一步训练。需要注意的是,在(85)中我们使用向量膨胀参数 (a_i),但在回归选择程序中,(W) 中的膨胀参数 (a_t) 是标量。

1.1 操作步骤

  1. 参数转换 :在应用任何反向传播程序之前,将回归选择程序得到的标量膨胀参数转换为具有相同分量的向量。
  2. 选择训练算法 :标准的反向传播是一种随机梯度程序,但由于初始化程序的良好性能,我们更倾向于使用拟牛顿算法来训练小波网络。
  3. 模型改进 :为了更好地捕捉回归中的线性特性,我们将(85)替换为:
    [
    f_n(x) = \sum_{i=1}^{n} u_i\varphi(a_i * (x - t_i)) + c^T x + b
    ]
    其中,额外的参数 (c \in R^d),(b \in R)。相应地,初始化程序也会进行轻微修改。

2. 模糊模型:在非线性非参数模型中表达先验知识

2.1 模糊规则与非参数模型中的先验知识

2.1.1 输入变量与模糊集成员函数

输入变量是标量,记为 (x_1, \cdots, x_d)。输入位置通过模糊集成员函数进行编码,即函数 (\mu_A(x_i)),其值在 ([0, 1]) 范围内,其中符号 (A) 只是一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值