回归选择、反向传播与模糊模型的融合应用
1. 回归选择与反向传播的结合
在处理小波网络时,我们可以使用之前提到的任何程序来初始化小波网络(85)。之后,通过反向传播程序对该网络进行进一步训练。需要注意的是,在(85)中我们使用向量膨胀参数 (a_i),但在回归选择程序中,(W) 中的膨胀参数 (a_t) 是标量。
1.1 操作步骤
- 参数转换 :在应用任何反向传播程序之前,将回归选择程序得到的标量膨胀参数转换为具有相同分量的向量。
- 选择训练算法 :标准的反向传播是一种随机梯度程序,但由于初始化程序的良好性能,我们更倾向于使用拟牛顿算法来训练小波网络。
- 模型改进 :为了更好地捕捉回归中的线性特性,我们将(85)替换为:
[
f_n(x) = \sum_{i=1}^{n} u_i\varphi(a_i * (x - t_i)) + c^T x + b
]
其中,额外的参数 (c \in R^d),(b \in R)。相应地,初始化程序也会进行轻微修改。
2. 模糊模型:在非线性非参数模型中表达先验知识
2.1 模糊规则与非参数模型中的先验知识
2.1.1 输入变量与模糊集成员函数
输入变量是标量,记为 (x_1, \cdots, x_d)。输入位置通过模糊集成员函数进行编码,即函数 (\mu_A(x_i)),其值在 ([0, 1]) 范围内,其中符号 (A) 只是一