量子布丁
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
29、小波识别中的回归变量选择方法
本文介绍了小波识别中三种常用的回归变量选择方法:基于残差的选择方法、正交化逐步选择方法和反向消除方法。每种方法都有其适用场景和优缺点,适用于不同规模的数据和不同需求的模型构建。文章还介绍了简化的反向消除方法,以减少计算复杂度,并提供了实际应用中的选择建议。这些方法能够有效提高小波回归模型的预测精度和性能,适用于信号处理、图像处理和机器学习等多个领域。原创 2025-07-22 04:24:24 · 13 阅读 · 0 评论 -
28、小波识别技术的实验结果与分析
本文详细探讨了小波识别技术在多个实际系统建模中的应用,包括燃气轮机温度分布预测、机器人手臂液压执行器建模以及糖尿病患者的血糖变化预测。通过对比小波网络、模糊网络、半物理模型及多项式模型的性能,展示了小波技术在非线性系统建模中的优越性。同时,文章还从数学理论和软件支持角度分析了不同模型在低维、中维和高维输入场景下的适用性,并展望了未来的研究方向,如高维小波库构建、多分辨率动态建模及模糊建模与非参数模型的融合。原创 2025-07-21 10:46:11 · 13 阅读 · 0 评论 -
27、回归选择、反向传播与模糊模型的融合应用
本文探讨了回归选择与反向传播在小波网络中的融合应用,并介绍了模糊模型在非线性非参数模型中表达先验知识的方法。通过参数转换、训练算法选择和模型改进,提升了小波网络的训练效果。同时,提出了分层模糊模型的语法和‘向下拉伸’机制,实现了小波网络的抽象。未来的研究方向包括优化分层模糊模型、结合其他机器学习算法以及拓展其在不同领域的应用。原创 2025-07-20 11:59:11 · 14 阅读 · 0 评论 -
26、小波在非参数估计与系统辨识中的应用
本文探讨了小波在非参数估计与系统辨识中的应用。首先介绍了小波在非参数回归与密度估计中的方法,分析了其面临的问题,并提出了小波收缩算法作为解决方案。随后详细描述了小波估计器的实际实现步骤,包括直接小波估计和快速小波估计流程。在系统辨识部分,介绍了自适应伸缩/平移采样方法以及小波网络的结构与训练策略,重点讨论了构建小波库和选择最佳小波回归器的三种启发式方法。最后通过案例分析和技术对比,总结了小波技术在处理高维稀疏数据中的优势,并展望了未来发展方向。原创 2025-07-19 11:15:05 · 13 阅读 · 0 评论 -
25、小波在函数逼近与识别中的应用
本文深入探讨了小波变换在函数逼近与识别中的应用。首先介绍了连续小波变换和离散小波变换的基本原理,以及正交小波基的构造和性质。接着分析了小波变换与Besov空间的结合如何实现高效的函数逼近和特征提取。文中还讨论了小波变换在实际应用中的优势与挑战,并展望了其未来的发展方向。通过具体案例分析,展示了小波变换在图像处理和信号处理中的强大能力。最后提供了进一步学习小波变换的资源与实践建议。原创 2025-07-18 12:47:32 · 13 阅读 · 0 评论 -
24、非线性系统识别中的线性与非线性估计方法
本文详细探讨了非线性系统识别中的线性与非线性估计方法。重点介绍了核估计器、分段多项式估计器和投影估计器的基本原理及其性能特点,并对比分析了它们在收敛速度、空间适应性和计算复杂度等方面的表现。同时,文章还讨论了非线性估计方法,如神经网络和Breiman的铰接超平面方法,并指出其在空间适应性方面的优势。最后,文章提出Besov空间和小波分析作为处理具有稀疏奇点系统的潜在解决方案,并展望了未来研究方向,包括理论完善、算法优化、多方法融合和实际应用拓展。原创 2025-07-17 12:50:12 · 15 阅读 · 0 评论 -
23、小波在系统辨识中的应用
本文探讨了小波分析在系统辨识中的应用,重点研究了非线性非参数模型在复杂系统建模中的优势与挑战。文章从理论和实践两个层面分析了非参数回归框架及其不同问题类型,并介绍了核估计、神经网络、小波收缩等关键技术。通过燃气轮机系统建模、机器人手臂液压执行器建模和血糖变化预测三个实际案例,验证了基于小波的非参数方法在拟合精度和解释能力方面的优越性。同时,文章还讨论了如何利用模糊模型表达先验知识,为未来系统辨识研究提供了方向。原创 2025-07-16 12:45:58 · 13 阅读 · 0 评论 -
22、模糊神经网络系统:原理、应用与仿真
本文深入探讨了模糊神经网络(FNN)的原理、应用及其在模型参考控制系统中的仿真表现。文章详细介绍了模糊神经网络的在线初始化方法、其作为通用逼近器的数学证明,并进一步分析了其在系统辨识和控制中的应用。通过仿真实验验证了FNN在非线性系统控制中的有效性,并展示了其在线自适应能力、鲁棒性以及插值能力。研究表明,模糊神经网络结合了模糊逻辑与神经网络的优势,在实时控制应用中具有良好的性能和广阔的应用前景。原创 2025-07-15 09:56:50 · 11 阅读 · 0 评论 -
21、模糊神经网络在模型参考控制系统中的应用
本文探讨了模糊神经网络(FNN)在模型参考控制系统中的应用,重点介绍了基于均值的功能推理技术及其在模糊神经网络控制器设计中的实现。文章详细分析了模糊推理系统的结构、规则推理机制以及与神经网络的结合方式,并深入解析了FNN的分层操作、监督学习与初始化方法。同时,还对FNN的性能评估指标与优化方法进行了阐述,并通过实际应用案例展示了其在机器人控制和工业过程控制中的优势。最后,文章展望了FNN的发展趋势,并指出了其面临的挑战与未来研究方向。原创 2025-07-14 13:41:13 · 12 阅读 · 0 评论 -
20、基于均值的功能推理技术在姿态控制和移动机器人中的应用
本文探讨了基于均值的功能推理技术在姿态控制和移动机器人领域的应用。在姿态控制部分,以柔性卫星为例,分别介绍了二输入单输出和三输入单输出的模糊推理机制,并通过多个案例对比了不同参数设置对控制性能的影响,包括过阻尼、临界阻尼和欠阻尼响应的设计。在移动机器人部分,构建了机器人的动力学模型,并采用基于均值功能推理的FGNN进行轨迹控制仿真,分析了输入缩放和参数学习对速度和方位角控制的影响。研究表明,该技术在两种应用场景中均表现出良好的控制性能,具有广泛的应用前景,特别是在航天和智能机器人领域。原创 2025-07-13 16:30:39 · 13 阅读 · 0 评论 -
19、模糊神经网络控制系统中基于均值的功能推理技术
本文探讨了模糊神经网络控制系统中的基于均值的功能推理技术,重点分析了传统功能推理、简化推理和基于均值的功能推理方法的原理及其在模糊高斯神经网络(FGNN)中的应用。通过对比不同推理方法在结论部分所需学习参数的数量,表明基于均值的功能推理能够显著减少参数数量,从而提升控制器设计的效率。文章进一步展示了该方法在卫星姿态控制和移动机器人跟踪控制中的实际应用,验证了其有效性。原创 2025-07-12 16:59:37 · 12 阅读 · 0 评论 -
18、软计算范式下的专家系统:融合与创新
本文探讨了在软计算范式下设计专家系统的融合与创新方法。重点介绍了知识基网络的设计原理及其在分类、规则生成和诊断中的应用,同时分析了粗糙集和遗传算法在知识编码、网络优化中的作用。文章总结了多种软计算工具(如模糊集、神经网络、遗传算法)的融合方式,突出了神经模糊系统的优势,并对各类方法进行了比较研究,展望了其在未来实际应用中的潜力。原创 2025-07-11 10:42:05 · 9 阅读 · 0 评论 -
17、软计算范式中的专家系统:连接主义与神经模糊系统深度解析
本博文深入解析软计算范式中的专家系统,重点探讨连接主义专家系统与神经模糊专家系统的模型结构、规则生成机制及其应用领域。通过对比不同模型的特点,分析其在医疗诊断、模式识别等复杂问题中的实际应用,并展望专家系统的未来发展方向及选择策略。原创 2025-07-10 16:44:41 · 13 阅读 · 0 评论 -
16、软计算范式中的专家系统:原理与应用
本文探讨了软计算范式中的专家系统,涵盖模糊逻辑、神经网络、连接主义模型以及基于知识的网络的原理与应用。文章详细分析了专家系统的结构和数学建模方法,讨论了模糊逻辑在处理不确定性和模糊信息中的作用,连接主义模型在自动化知识获取和推理中的优势,以及神经模糊计算和基于知识的网络在系统优化中的应用。此外,文章还对比了不同技术的优缺点,总结了专家系统的构建流程,并通过医疗诊断和工业故障诊断等案例展示了实际应用场景。最后,文章展望了未来专家系统在多技术融合、新兴技术结合和应用领域拓展方面的发展趋势。原创 2025-07-09 10:25:27 · 14 阅读 · 0 评论 -
15、基于规则的智能系统与软计算范式下的专家系统
本文探讨了基于规则的智能系统与软计算范式下的专家系统。首先介绍了基于规则的智能系统构建方法,包括通过权重和偏差处理输入的算法及其在医疗预测中的应用示例。随后讨论了如何通过规则提取验证神经网络模型,并分析了规则优化的图像增强技术。最后,文章综述了软计算框架下的多种专家系统类型,如模糊专家系统、连接主义专家系统和神经模糊专家系统,强调了其在处理不确定性和复杂问题中的应用价值。原创 2025-07-08 14:35:34 · 16 阅读 · 0 评论 -
14、基于规则的智能系统:布尔规则提取与网络优化
本博文介绍了基于规则的智能系统,重点探讨了布尔规则提取与网络优化的技术细节。文章以印刷电路板制造中粘合剂分配控制为例,展示了如何将神经网络模型转换为可解释的布尔规则系统。通过量化节点、布尔变换以及规则简化策略,实现了从复杂神经网络到高效规则库的转换。此外,还讨论了网络设计、修剪、权重衰减等关键技术,以及如何利用奥卡姆剃刀原理简化规则库,从而构建可解释、高性能的智能系统。原创 2025-07-07 16:44:15 · 11 阅读 · 0 评论 -
13、神经网络与基于规则的系统融合:技术解析与应用策略
本博客深入探讨了神经网络与基于规则的系统融合的技术原理与应用策略。文章详细解析了神经网络的查询机制、理由子网功能、控制神经元的作用,以及三种神经符号集成策略的适用场景。通过将神经网络转换为布尔函数,提出了提升系统可解释性和信任度的方法。博客还讨论了基于规则的智能系统的优势、未来发展方向以及在医疗、金融等领域的应用潜力。原创 2025-07-06 16:01:00 · 15 阅读 · 0 评论 -
12、基于神经网络与规则的诊断系统解析
本文详细解析了一种结合神经网络与规则的诊断系统。该系统通过多个子网协同工作,利用溯因-预测推理循环,结合知识库中的信息,为诊断问题提供有效解决方案。内容涵盖神经网络结构、诊断专家系统的基本概念、通用诊断问题解决阶段、推理方案的作用,以及在儿科胃肠病学中的实际应用。文章重点介绍了证据子网、溯因子网、假设子网和预测子网的结构与功能,并展示了其在诊断流程中的关键作用。原创 2025-07-05 14:30:57 · 11 阅读 · 0 评论 -
11、神经网络与规则系统中的不确定推理工具
本文探讨了神经网络与规则系统在不确定推理中的应用,包括神经网络如何模拟基于规则的推理过程,处理非单调推理、定性假设选择和概率因果模型等不确定推理任务。文章详细分析了神经元的激发与抑制机制如何实现复杂的推理功能,并讨论了其在诊断系统和专家系统中的实际应用。原创 2025-07-04 15:46:49 · 9 阅读 · 0 评论 -
10、神经网络与规则系统中的分块机制详解
本博文详细解析了神经网络与规则系统中的分块机制,涵盖其在正向推理、知识表示与学习中的作用。文章介绍了分块机制的基本原理,包括其在产生式系统中的应用、神经网络模块的设计以及操作流程。同时探讨了其带来的认知与计算效果、内存饱和问题及优化策略,并结合实际应用场景与未来发展方向,深入分析了分块机制的潜力与挑战。原创 2025-07-03 09:22:56 · 11 阅读 · 0 评论 -
9、模糊系统与基于规则的神经网络系统实现
本文探讨了模糊系统的神经网络实现与基于规则的神经网络系统的设计与应用。首先介绍了模糊神经网络的自适应特性及其两种设计方法,包括基于Takagi-Sugeno模糊系统的实现和基于分层空间划分的结构自适应设计。随后详细描述了基于规则的神经网络系统的正向链推理机制,展示了其在逻辑推理中的神经网络实现方式。两种系统各有优势:模糊系统在不确定性和复杂建模中表现优异,而基于规则的神经网络系统则具备良好的可解释性和并行处理能力。文章还探讨了两者的融合潜力及其在工业控制、医疗诊断、金融风险评估等领域的应用前景,并提出了性能原创 2025-07-02 14:49:13 · 14 阅读 · 0 评论 -
8、基于层次空间划分的模糊神经网络设计与实现
本文提出了一种基于层次空间划分的模糊神经网络设计方法,结合了Takagi-Sugeno模糊系统与Sigmoid神经网络框架。该方法通过递归划分输入空间,自动生成模糊规则并优化模型结构,利用扩展卡尔曼滤波算法进行参数调整,实现了对高阶非线性系统的高效建模。文章详细阐述了模糊神经网络的结构设计、学习算法及其实现流程,并通过仿真示例验证了其在逼近非线性函数和建模生物反应器中的有效性。结果表明,该方法能够在较少规则的情况下获得优异的建模性能,具有良好的应用前景。原创 2025-07-01 09:07:55 · 9 阅读 · 0 评论 -
7、模糊系统实现:带额外或层的模糊神经网络设计与应用
本文提出了一种新的模糊系统实现方法,通过在Takagi-Sugeno模糊系统基础上引入额外的或(OR)层,使局部线性系统能够关联多个输入模糊区域,从而优化系统结构,提升高阶复杂系统的建模与控制能力。该系统结合六层模糊神经网络架构与混合学习算法,有效减少了计算复杂度,提高了训练速度和性能。仿真示例表明,该方法在非线性函数建模、工业控制建模以及股票趋势预测等多场景中表现出色,具有广泛的应用前景。原创 2025-06-30 14:26:50 · 9 阅读 · 0 评论 -
6、模糊系统的实现:原理、结构与运行机制
本文深入解析了模糊系统的实现原理、结构组成与运行机制,详细介绍了模糊集理论、语言变量、模糊蕴含等基础概念,并探讨了模糊系统的核心功能模块:模糊化、规则库、推理引擎和去模糊化。文章还比较了Mamdani模糊系统与Takagi-Sugeno模糊系统的结构特点与应用场景,分析了模糊分区、AND/OR矩阵、推理引擎设计等关键技术环节。此外,还涵盖了模糊系统在工业控制、交通管理、汽车控制等领域的应用实例,并讨论了模糊系统与神经网络结合的发展趋势,为读者提供了全面理解模糊系统及其设计方法的理论基础和实践指导。原创 2025-06-29 13:35:46 · 19 阅读 · 0 评论 -
5、模糊神经网络技术与模糊系统实现
本文探讨了模糊神经网络技术与模糊系统的实现,介绍了模糊神经网络在数值信息与语言信息之间的桥梁作用及其相关研究成果。同时,文章分析了模糊系统的发展历程、工作流程、设计问题及解决方案,并重点阐述了模糊神经网络与模糊系统的集成方法与结构类型。通过结合神经网络的学习能力和模糊系统的推理能力,这些技术为复杂系统的处理和智能控制提供了有效途径,具有广泛的应用前景。原创 2025-06-28 16:47:23 · 10 阅读 · 0 评论 -
4、模糊神经网络技术详解
本文详细介绍了模糊神经网络技术,包括区间算术神经网络、模糊化神经网络、具有模糊权重的神经网络的基本原理和学习过程。文章还探讨了模糊神经网络在分类与建模中的应用,分析了其与传统神经网络的区别,并展望了其未来发展方向。模糊神经网络能够有效处理模糊性、不确定性和语言知识,具有广泛的应用潜力。原创 2025-06-27 09:34:06 · 15 阅读 · 0 评论 -
3、模糊神经网络技术:区间算术在神经网络中的应用
本文介绍了模糊神经网络技术,重点讨论了区间算术在神经网络中的应用。针对现实世界中训练数据存在的不确定性和缺失输入问题,提出基于区间算术的解决方案。详细阐述了处理区间输入的神经网络架构、学习算法以及带有区间权重的神经网络设计。通过仿真结果展示了该方法在分类和函数逼近中的有效性。此外,还分析了区间算术神经网络的优势,包括处理数据不确定性、利用专家知识和近似非线性区间函数。最后,探讨了其在实际应用中的案例、未来发展方向和面临的挑战。原创 2025-06-26 09:33:32 · 12 阅读 · 0 评论 -
2、模糊神经网络技术及其应用
本文介绍了模糊神经网络的基本概念及其在模糊分类和模糊建模中的应用。模糊神经网络结合了模糊逻辑和神经网络的优势,能够有效处理复杂的模式分类和非线性系统建模问题。文章详细讨论了模糊神经网络的不同分类,包括具有学习能力的模糊规则系统、由网络架构表示的模糊规则系统、用于模糊推理的神经网络、模糊化的神经网络等。此外,还探讨了基于区间算术的神经网络以及神经网络的模糊化实现方法,并介绍了模糊分类和模糊建模的学习过程。最后,文章总结了模糊神经网络的应用前景及其在实际问题中的优势。原创 2025-06-25 11:14:05 · 11 阅读 · 0 评论 -
1、模糊逻辑与专家系统应用中的神经网络技术
本博客探讨了模糊逻辑与专家系统应用中的神经网络技术,涵盖了模糊神经网络的构建与应用、模糊系统的实现、规则系统的设计、神经网络与模糊逻辑的集成方法,以及小波在网络识别中的应用等内容。文章详细介绍了模糊分类、模糊建模、区间算术在神经网络中的使用、模糊化神经网络、正向推理、布尔规则提取、软计算范式、神经-模糊专家系统以及小波网络的训练与优化等多个主题。通过理论分析与实例仿真,展示了这些技术在复杂问题求解、智能控制和系统建模中的广泛应用与潜力。原创 2025-06-24 13:18:03 · 11 阅读 · 0 评论