三家美国巨头英伟达、微软、亚马逊同日接入 DeepSeek,这意味着什么?对行业影响有多大?

这波操作属实绝了

给AI圈扔了颗核弹,三家巨头打着打着就过来跪舔了

没想到这三个巨头变脸这么快,为了自身的利益,贴着厚脸皮向前冲!

DeepSeek没啥影响。只能说明,国内的技术实力这么快就得到认可了。

直到DeepSeek R1发布之前,国内一众大模型厂商均尚未推出能够对标OpenAI o1的模型。DeepSeek成了第一个攻破OpenAI技术黑匣子的玩家

DeepSeek作为一家中国的人工智能初创公司,据介绍,在单个NVIDIA HGX H200系统上,完整版DeepSeek-R1 671B的处理速度可达3,872 Token/秒。

看看DeepSeek有多牛逼就知道了

在标准化编码测试中,DeepSeek-R1 也展现出“专家级”水平,在 Codeforces 平台上取得了 2029 Elo 评级,超越了 96.3% 的人类竞争者。

让DeepSeek写一首蛇年的藏头诗,

如果调用R1(深度搜索),人工智能的「思考过程」会毫无保留地展示出来。甚至你还能看到它给自己不断纠错、生成一版更好的内容。牛啊!

如果你拿着训练好的DeepSeek大模型穿梭到古代,一步成诗,那绝对比杜甫、李白还要强。

看到没?DeepSeek就是如从的牛逼。

DeepSeek 能够在短时间内获得如此多国际巨头的青睐,据说是在研发大模型时绕过了 CUDA

话说什么是CUDA?

由NVIDIA公司开发的一种计算平台和编程模型。CUDA让普通的图形卡不仅仅能处理视频游戏和图形渲染,还能处理科学计算和工程问题,比如天气预测、分子动力学模拟等。

—用最直白、通俗的话来说,就是拓展了GPU的计算适用领域,“出圈”了。

在 DeepSeek-V3 的技术博文中,DeepSeek 表示其使用了英伟达的 PTX语言

假如 DeepSeek 的开发者能够很好地使用 PTX(Parallel Thread Execution)语言,那么相比使用 CUDA 提供的编程接口,肯定可以更精细地控制 GPU 之间传输数据、权重和梯度等。可见DeepSeek的专业强度还是可以的

不过绕过 CUDA 的做法具有一定的技术难度,这需要开发者既要懂 AI 模型的算法,又要懂计算机系统架构来高效分配硬件资源。如果没有同时掌握这两方面技能的开发者,那就要分别招聘懂这些技能的开发者,即需要协调好不同人员。

关于这方面的人才,据说现在还很少。就连微软,Google,亚马逊都在抢这方面的人才。

在国内更是先有传闻称字节八位数年薪挖走阿里通义千问技术负责人周畅,后又有雷军千万元年薪挖角DeepSeek“天才AI少女”罗福莉。AI人才战正如火如荼。

当你打开网站上一看,更是一下字节,阿里大厂居多的AI岗位多如牛毛,百度则面向2025届优秀博士生推出了AIDU计划,腾讯也设置了AI大模型招聘专项。

AI人才已经成为互联网厂商们的必争之地,大厂之间互相挖角也在业内已经见怪不怪。

对于职场人来说,DeepSeek带来了一波又一波冲击,想要持续进步,就要适应 AI 时代的新要求,才能让自己不掉队。现在DeepSeek走出来了另一条路,未来的大模型就业上,一定会存在着新一轮的春天。

当然想要接触AI大模型DeepSeek的小伙伴们,也可以通过知乎知学堂的AI大模型技术在线视频训练营,这一课程让你快速接触大模型,理解DeepSeek原理、底层算法,上手开发和微调DeepSeek大模型,带你快速掌握大模型的技术架构,还可以进行商业实战,点击下面卡片就能领取↓↓↓

🔥技术岗高薪必学:AI大模型技术原理+应用开发+模型训练

¥0.00就业无忧

目前还是福利阶段,还是免费的情况下,我劝各位花一点时间了解一下,现在DeepSeek盛行的时间段,如果成为不懂AI的程序员真的有点过分了。很多人学习完这个课程,基本上都去了大厂,薪资翻了不止两倍。

DeepSeek开源后势头很猛,成本低性能强,测试分数比OpenAI高不少。现在已经有公司投入了数十亿美元训练出了一些模型,而你只需支付少量费用就能访问。然后,拿去开发客服聊天机器人、邮件摘要工具、AI医生、法律文档助手等诸多应用。

从格局来看

AI界DeepSeek的开源,表明开放合作正成为AI领域的主流趋势,而不是各自封闭发展。不然各忙各的,参差不齐的,乱搞套了

中国AI企业已具备与国际巨头平等合作的技术实力。就像梁永峰回答的那样:随着经济发展,中国也要逐步成为贡献者,而不是一直搭便车。

可能促进更多中美AI企业的技术交流与商业合作。

DeepSeek除了让大家反思成本,还有一个关键点就是,你必须底层设计足够强,实现模型在汇编和机械码层面的自我优化,进而做到硬件迁移自由,不必受制于某一家。

英伟达都说了:信什么狗屁 OpenAI,不如我自己来。

然后微软,亚马逊都接入了

接下来就是OpenAI接入了

Google接入了

国内的大厂,百度,阿里,腾讯,华为也接入了

忽然觉得国产AI大模型都这么强了

找云服务器,8⃣️月份有羊毛可以薅yijiacloud.com.cn,注册就有50算力金.

<think>嗯,用户这次明确询问如何获取DeepSeek模型的API访问权限,结合对话历史来看,用户最初询问了公司背景,现在转向具体的技术接入问题,说明ta可能是个开发者或技术决策者。从引用内容看,需要区分官方API和第三方渠道的不同获取方式。 用户提供的五个引用中,[1][3][4][5]都涉及API获取,但来源差异很:引用[1]指向官方途径最权威;引用[2]提到的英伟达平台需要验证是否属于官方合作渠道;引用[3]的硅基流动和引用[5]的Ollama属于第三方部署方案。考虑到用户身份可能是企业开发者,应该优先推荐官方渠道,同时补充替代方案供灵活选择。 注意到引用[4]提到企业级部署,这部分需要特别强调硬件要求(如GPU显存)和部署成本,避免用户误判实施难度。对于引用[3]的流式响应接口示例,虽然代码简洁但存在第三方依赖风险,需在回答中提示。 数学公式方面,系统指令要求严格遵循LaTeX格式,在说明注意机制优化时需用$$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$单独呈现,但当前回答场景不需要插入该公式。 最后生成的相关问题要覆盖不同用户角色:普通开发者可能关心免费额度(问题1),技术负责人更关注部署方案对比(问题2),而运维人员需要监控指标(问题3)。</think>以下是获取DeepSeek模型API访问权限的详细指南,整合了官方及替代方案: --- ### 一、官方API申请(推荐) 1. **注册开发者账号** 访问 [DeepSeek 官网](https://platform.deepseek.com/) → 点击“Sign Up”完成注册(需手机号/邮箱验证)[^1]。 2. **创建API密钥** - 登录后进入 **控制台 → API管理** - 点击“Create API Key”生成密钥(格式如 `sk-xxx`)[^1][^3] - 支持设置IP白名单和用量限制 3. **调用示例(Python)** ```python import requests headers = {"Authorization": "Bearer sk-xxx"} data = { "model": "deepseek-r1", "messages": [{"role": "user", "content": "你好!"}] } response = requests.post("https://api.deepseek.com/v1/chat/completions", json=data, headers=headers) print(response.json()) ``` > 💡 实时流响应需在参数中添加 `"stream": true`[^1][^3] --- ### 二、替代方案(无需官方申请) #### 方案1:通过英伟达API网关 - **地址**:`https://integrate.api.nvidia.com/v1/chat/completions` - **模型名**:`deepseek-ai/deepseek-r1` - **要求**:需注册 [NVIDIA API 账号](https://build.nvidia.com/) 并获取密钥[^2] #### 方案2:第三方平台接入(如硅基流动) 1. 注册 [硅基流动平台](https://www.siliconflow.com/) 2. 在“模型工坊”选择 **DeepSeek-IE优化版** 3. 生成API密钥(格式 `sili-xxxx`) 4. 调用流式接口(前端示例): ```javascript const stream = new SiliconStream({ apiKey: 'sili-xxxx', model: 'DeepSeek-ie', chunkHandler: data => console.log(data.content) })[^3] ``` #### 方案3:本地化部署(企业级) 1. **硬件要求**:至少24GB显存(如RTX 4090/A100)[^4][^5] 2. **部署步骤**: ```bash # 使用Ollama部署(推荐) ollama run deepseek-r1 # 启动API服务 ollama serve --port 11434 ``` 3. **本地API调用**: ```python requests.post("http://localhost:11434/api/generate", json={ "model": "deepseek-r1", "prompt": "你好!" })[^5] ``` > 📌 支持Docker容器化部署(教程见引用[4]) --- ### 三、关键注意事项 | 方案 | 成本 | 速率限制 | 适用场景 | |------------|--------|------------|-------------------| | 官方API | 免费 | 每分钟60次 | 个人开发者/小项目 | | 英伟达网关 | 按量计费 | 高并发 | 商业应用 | | 本地部署 | 硬件成本 | 无限制 | 数据敏感型企业 | > ⚠️ 第三方平台需注意:密钥权限管控可能受限,敏感数据建议走官方或本地方案[^3][^4] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值