[2025ICCV-密集预测方向]FreeDNA:基于扩散的密集预测模型

1. 研究背景与问题

  • 核心问题​:基于扩散的密集预测模型(如深度估计、光流、语义分割等)在跨域测试时性能显著下降。
  • 现有局限​:传统域适应(DA)方法依赖对抗训练或自监督学习,需额外训练成本;扩散模型虽在生成任务中表现优异,但针对密集预测的域适应研究不足。
  • 关键观察​:
    • 扩散模型的曝光偏差(Exposure Bias)​​ 与域偏移(Domain Shift)​​ 在噪声预测统计量上表现相似(图2)。
    • 域信息主要与图像的幅度分量相关,而曝光偏差导致的噪声统计差异与域偏移高度关联(图2b-c)。
    • 扩散模型的噪声预测统计量能有效捕捉不同域的条件图像差异(图5)。


2. 核心方法:Domain Noise Alignment (DNA)​

提出训练免费的域噪声对齐(DNA)机制,通过调整扩散采样过程中的噪声统计量实现域适应,无需微调模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值