RSA维纳攻击
一.题目描述
适用于e过大或国过小情况下的RSA加密
题干如下:
#coding:utf-8
import gmpy2
import libnum
e = 548564175098067125961375319851171259385596271876637657761522885808657855394647972481844447376596437557651275057610120865395646169671221375251081541213042646978655686531005856899936162320404991331623237305862913250487293880446994470841390688087392282045130633013139311548859962245908782253213294049851175315059
n = 639662333905190724963174274393118134850652056724765488685973275138948202602626008285649108873241886836533441901790252560580886492518792249844707754890068885294414947775869189660933854702732140888525369256213185908742658834741758334492843871934294115437721034834635565406377520933839418094457376057043593848401
m="flag{you_need_to_solve}"
m=libnum.s2n(m)
c1=pow(m,e,n)
print(c1)
c1 = 266367266471585923035346980467315672043839080179258966276144775106482166900911004389808367589961536843898187180012055918063504477273067284037318171833017082239907978935274619109926579983150571298634653886980563681026116724117473808890951091279814434050754571460308728024448607359710055618866766919226511213734
根据以上信息解出明文
二.解题方法
1.解题原理
Wiener 表示如果满足:
d<1/3n1/4
那么一种基于连分数的特殊攻击类型就可以危害 RSA 的安全。此时需要满足:
q<p<2q
如果满足上述条件,通过 Wiener Attack 可以在多项式时间中分解 n,思路如下:
N = pq
φ(n)=(p−1)(q−1)=pq−(p+q)+1=N−(p+q)+1
∵p, q 非常大 ,
∴pq≫p+q,
∴φ(n)≈N
∵ed≡1modφ(n),
∴ed−1=kφ(n),
这个式子两边同除 dφ(n)
可得:
eφ(n)−kd=1dφ(n)
∵φ(n)≈N,
∴eN−kd=1dφ(n),同样 dφ(n) 是一个很大的数,所以 eN 略大于 kd, e 和 N 是我们是知道的,公钥中给我们的,所以我们计算出 eN后,比它略小的 kd 用计算 eN 的连分数展开,依次算出这个分数每一个渐进分数,由于 eN 略大于 kd,wiener 证明了,该攻击能精确的覆盖 kd。
2.解题步骤
利用python脚本,输入n。e。c变量的值即可解出明文
脚本如下:
i
mport gmpy2
import libnum
def continuedFra(x, y):
"""计算连分数
:param x: 分子
:param y: 分母
:return: 连分数列表
"""
cf = []
while y:
cf.append(x // y)
x, y = y, x % y
return cf
def gradualFra(cf):
"""计算传入列表最后的渐进分数
:param cf: 连分数列表
:return: 该列表最后的渐近分数
"""
numerator = 0
denominator = 1
for x in cf[::-1]:
# 这里的渐进分数分子分母要分开
numerator, denominator = denominator, x * denominator + numerator
return numerator, denominator
def solve_pq(a, b, c):
"""使用韦达定理解出pq,x^2−(p+q)∗x+pq=0
:param a:x^2的系数
:param b:x的系数
:param c:pq
:return:p,q
"""
par = gmpy2.isqrt(b * b - 4 * a * c)
return (-b + par) // (2 * a), (-b - par) // (2 * a)
def getGradualFra(cf):
"""计算列表所有的渐近分数
:param cf: 连分数列表
:return: 该列表所有的渐近分数
"""
gf = []
for i in range(1, len(cf) + 1):
gf.append(gradualFra(cf[:i]))
return gf
def wienerAttack(e, n):
"""
:param e:
:param n:
:return: 私钥d
"""
cf = continuedFra(e, n)
gf = getGradualFra(cf)
for d, k in gf:
if k == 0: continue
if (e * d - 1) % k != 0:
continue
phi = (e * d - 1) // k
p, q = solve_pq(1, n - phi + 1, n)
if p * q == n:
return d
n = 639662333905190724963174274393118134850652056724765488685973275138948202602626008285649108873241886836533441901790252560580886492518792249844707754890068885294414947775869189660933854702732140888525369256213185908742658834741758334492843871934294115437721034834635565406377520933839418094457376057043593848401
e = 548564175098067125961375319851171259385596271876637657761522885808657855394647972481844447376596437557651275057610120865395646169671221375251081541213042646978655686531005856899936162320404991331623237305862913250487293880446994470841390688087392282045130633013139311548859962245908782253213294049851175315059
c = 266367266471585923035346980467315672043839080179258966276144775106482166900911004389808367589961536843898187180012055918063504477273067284037318171833017082239907978935274619109926579983150571298634653886980563681026116724117473808890951091279814434050754571460308728024448607359710055618866766919226511213734
d=wienerAttack(e, n)
m=pow(c, d, n)
print(libnum.n2s(m).decode())
运行结果如图:
输入flag即可