深度协同过滤算法

本文介绍了Neural Collaborative Filtering(NCF),一种利用多层感知器学习user与item交互的深度学习框架,旨在改进传统矩阵分解方法在推荐系统中的应用。NCF包括线性(GMF)和非线性(MLP)模型,通过融合两种模型提高推荐性能。实验证明,NCF在MovieLens和Pinterest数据集上优于传统方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 写在前面

协同过滤算法作为推荐中应用最为广泛的算法,一直是研究的热门领域。随着近些年深度学习的崛起,很多学者开始尝试用深度学习中的技术优化协同过滤,但是大多数都是利用深度学习建模提供一些辅助信息,比如项目的文本描述或者音乐的声学特征。这篇论文提出了一个采用多层感知器来学习user与item的交互的通用框架NCF,它可以取代传统用矩阵分解求内积建模的方法。

这篇论文是新加坡国立大学的何向南博士在IW3C2 2017上的工作成果。何博士的论文一般都公布代码,非常适合学习。

相关工作

传统的协同过滤算法是基于矩阵分解(Matrix Factorization)的方法,它的基本思想是把用户和项目映射在一个shared latent space中,然后通过latent features来描述用户和项目。那么用户在项目上的交互就被建模为他们向量之间的内积。这种方法非常普遍,包括在Spark MLlib中的ALS协同过滤算法在内的主流算法均是使用的这个思想。很多在这个方向的学者虽然一直在研究,但是他们还是在研究如何优化矩阵分解的方法,核心思想还是离不开MF。

在基于MF的协同过滤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值