
数字图像处理
以基础为主
normol
先做人,后做事。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
opencv 实现ps油漆桶【三】
github地址(更新中):https://github.com/SunnyWuYang/Paint-Bucket-with-Gaps参考:[1] opencv实现画板效果:https://github.com/aapsi/Paint-Application版本三目的与功能:画板工具增加功能(橡皮擦、笔刷大小更改、笔刷跟随效果、种子点选择)将floodfill算法颜色判断由1改为255画板与floodfill算法整合算法实现floodfill.pyimport cv2import原创 2020-11-14 21:42:43 · 772 阅读 · 0 评论 -
opencv 实现ps油漆桶【二】
github地址(更新中):https://github.com/SunnyWuYang/Paint-Bucket-with-Gap参考:[1] opencv实现画板效果:https://blog.csdn.net/qq_42191914/article/details/105035921版本二目的与功能:创建简易版的画板工具为算法提供实验图像利用自己绘制的图像测试算法算法实现import osimport sysimport cv2import numpy as np"""原创 2020-11-13 15:35:46 · 480 阅读 · 0 评论 -
opencv 实现ps油漆桶【一】
前言(可忽略):前些日子遇到个需求,需要首先检测出网格面边缘(不是完全规则的),然后将网格面内部填充为另一种颜色。但是由于前景背景较为相似,检测出的网格面边缘并没有完全闭合,导致用普通的floodfill填充会使填充区域溢出当前网格。于是四处查找相关算法,终于在github上找到一个用typescript实现的项目,但这个项目功能比较简单。虽然最开始的需求已经没有了,但出于兴趣想将这个功能完整的实现出来。(由于平时有很多其他的事,因此只能利用空余时间一点点更新)github地址(更新中):https://原创 2020-11-13 14:49:01 · 1052 阅读 · 1 评论 -
python FFT图像匹配
利用傅里叶空间的correlation实现模板与图像间的匹配,原参考代码用matlab实现源地址,这儿用python复现。import numpy as npimport cv2from scipy import fftpackfrom matplotlib import pyplot as plttemplate = cv2.imread('template.jpg')origin = cv2.imread('image.jpg')template_gray = cv2.cvtCol原创 2020-08-18 11:19:41 · 1686 阅读 · 1 评论 -
opencv 彩色图像equalizeHist注意事项
对彩色图像进行直方图均衡化,一般是通过对HSV色彩空间的V通道进行直方图均衡化,再合并H,S,V三个通道后转化为RGB空间。(其实V通道简单来说就是图像明暗通道,增加V通道值的效果等同于windows照片编辑中的光线调整,如图:)示例代码为:import cv2import numpy as npimport matplotlib.pyplot as pltif __name__ == '__main__': img = cv2.imread("pic.jpg")原创 2020-08-07 10:38:25 · 2002 阅读 · 1 评论 -
opencv minAreaRect角度
minAreaRect返回的数据包括了矩形的中心点,宽、高,和旋转角度。其中旋转角度的范围是[-90,0),在第一、第二象限有不同的表现形式,更重要的是,宽高也会跟着旋转而发生变化。下面是实验的模拟:首先创建一个矩形图,初始水平,import cv2import numpy as npimport matplotlib.pyplot as pltimport imutilsif __name__ == '__main__': image = np.zeros((40.原创 2020-08-04 11:28:57 · 4854 阅读 · 2 评论 -
Otsu算法原理与python实现
[注:下面公式所涉及的是带权重的均值与方差,一开始我并不明白为什么要这样做,还去查了关于带权重与不带权重计算均值或方差的区别,后面发现,应该是因为该算法的计算是基于概率分布,而概率分布意味着这是一个可以根据概率,产生无数样本的population,而非sample,因为对概率分布求均值就相当于求期望,方差也同理,需要带上概率]原理一幅图片的所有像素有LLL个灰度级,[1,2,⋯ ,L][1,2,\cdots,L][1,2,⋯,L]处于灰度级iii的像素数量表示为nin_ini,因此像素的总数为N=n原创 2020-05-10 17:24:27 · 5040 阅读 · 0 评论