二、空间直线的表述
1. 空间直线的参数化
-
零空间与生成子空间表示
该种表示方法是一种过参数表示,用8个参数表示4自由度的直线。个人直观的理解为:不重合且以齐次表示的两个点之间的连线。
表述方式为:L2×4:=[X1TX2T]=[X1~1X2~1]=[u1v1w11u2v2w21]L_{2\times4}:=\begin{bmatrix}X_1^T\\X_2^T\end{bmatrix}=\begin{bmatrix}\widetilde{X_1} & 1\\ \widetilde{X_2} &1\end{bmatrix}=\begin{bmatrix} u_1&v_1&w_1& 1\\u_2&v_2&w_2&1\end{bmatrix}L2×4:=[X1TX2T]=[X1 X2 11]=[u1u2v1v2w1w211]。
另外,关于[12]中生成空间的表述部分没有看懂,我个人以为应该不影响。
-
Plucker(普吕克)矩阵表述
该种表示方法尽管用16个参数表示4自由度的直线,但是仅有6个非零元素,除去齐次的一个自由度,又因为满足行列式为零,所以自由度为4。[12]疑问:满足行列式为零不属于一个约束条件吗?为什么能够去除自由度?该表述是否可以无约束优化?
表述方法为:L:=X1X2T−X2X1TL:=X_1X_2^T-X_2X_1^TL:=X1X2T−X2X1T。L为4x4的齐次反对称阵,其秩为2,并且L与定义它的两点无关。
-
给定从世界坐标系c到相机w的变换矩阵Tcw=[Rcwtcw01]T_{cw}= \begin{bmatrix} R_{cw} & t_{cw} \\ 0 & 1 \end{bmatrix}Tcw=[Rcw0tcw1],通过下述公式将Plucker矩阵进行变换:
Lc=TcwLwTcwT L_c=T_{cw}L_wT_{cw}^T Lc=TcwLwTcwT -
Plucker矩阵与Plucker直线坐标的转换:L4×4=[[d]^l−lT0]L_{4\times 4}=\begin{bmatrix} [d]^{\hat{\quad}} & {l} \\ {-{l}^T} & 0 \end{bmatrix}L4×4=[[d]^−lTl0]
-
-
Plucker直线坐标表示
该种表示方法是一种过参数表示,用6个参数表示4自由度的直线,是Plucker矩阵中六个非零元素的排列l12:l13:l14:l23:l42:l34l_{12}:l_{13}:l_{14}:l_{23}:l_{42}:l_{34}l12:l13:l14:l23:l42:l34。我个人直观上理解,就是LSR中定义的那两个线的方向及线的垂直方向。
表述方式为:L:=(l‾,d)T=[X~2×X~1X~2−X~1]L:= (\overline {l},d)^T=\begin{bmatrix}\widetilde{X}_2\times \widetilde{X}_1\\\widetilde{X}_2-\widetilde{X}_1\end{bmatrix}L:=(l,d)T=[X