实现一个自己的LLM

需要继承 langchain_core.language_models.llms.LLM

至少实现 2个方法: _llm_type 和 _call。

from langchain_core.language_models.llms import LLM
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
    cast,
)

from langchain_core.callbacks import (
    CallbackManagerForLLMRun,
)
class myllm(LLM):
    """my llm"""

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "myllm"

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        """Return next response"""
        print(prompt)
        # return prompt[::-1]
        return "123"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值