
深度学习
文章平均质量分 56
Try,多训练
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Pytorch查看神经网络结构和参数量
查看神经网络结构和参数原创 2025-04-09 15:50:56 · 497 阅读 · 0 评论 -
CUDA out of memory
获取当前GPU的内存使用情况。原创 2025-03-01 17:26:53 · 880 阅读 · 0 评论 -
网络模型的保存与加载
在保存通用检查点以用于推理或恢复训练时,您必须保存的不仅仅是模型的 state_dict。同样重要的是保存优化器的 state_dict,因为它包含在模型训练时更新的缓冲区和参数。您可能想要保存的其他项目包括您停止的 epoch、最新记录的训练损失、外部 torch.nn.Embedding 层等。要保存多个组件,请将它们组织在一个字典中,并使用 torch.save() 序列化该字典。要加载项目,请首先初始化模型和优化器,然后使用 torch.load() 在本地加载字典。原创 2025-02-27 22:03:17 · 315 阅读 · 0 评论 -
MONAI之加载和保存各种格式的医学图像
参数解析:两个重要参数的解析image_only以及ensure_channel_first;其他参数可以在PyCharm的源代码中查看。再接着使用monai.visualize.matshow3d来对3D医学图像进行可视化。原创 2025-01-02 12:35:19 · 422 阅读 · 0 评论 -
查看医学影像的长宽高和间距
查看原始医学影像的长宽高和间距,方便预处理时候进行统一。原创 2024-12-28 10:55:13 · 202 阅读 · 0 评论 -
医学图像格式
医学图像格式学习原创 2024-11-21 16:41:03 · 180 阅读 · 0 评论 -
卷积神经网络(CNN)
卷积神经网络(CNN)详细介绍及其原理详解原创 2024-11-19 22:41:51 · 524 阅读 · 0 评论 -
Pytorch tutorial(小土堆)学习笔记
Transforms 是一个用于对图像和数据进行预处理的模块。通过使用 transforms 模块,可以轻松地对输入图像进行各种变换和操作来增加数据集的样本多样性和数量。Transforms常用函数介绍:(可以通过ALT + 7 查看Transforms的Structure, Ctrl + P 查看函数所需参数)setting-case-Code Completion-取消勾选match case。● PS: python小技巧 取消首字母匹配。Transforms常用函数使用小结。原创 2024-11-14 15:47:41 · 386 阅读 · 0 评论